OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 27–32

Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment

Ping-Chun Li and Edward T. Yu  »View Author Affiliations

JOSA B, Vol. 30, Issue 1, pp. 27-32 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multilayer plasmonic optical metasurfaces are demonstrated and analyzed that provide highly wavelength-selective reflectance that is robust to variation in angle of incidence and highly tolerant of misalignment of features between vertically stacked layers. Structures containing two layers of Ag nanostructure arrays separated by a dielectric layer are shown to provide reflectance >75% and transmittance <1% over a bandwidth of 100nm, with minimal variation for angles of incidence varying from 0° to 30°. These characteristics are shown to be robust to variations in vertical alignment between layers comparable to the array period. An analysis of these characteristics in terms of plasmonic behavior of individual Ag nanostructures, interference effects between multiple layers of nanostructure arrays, and phase shifts produced at each array layer is presented.

© 2012 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: August 23, 2012
Revised Manuscript: November 6, 2012
Manuscript Accepted: November 6, 2012
Published: December 4, 2012

Ping-Chun Li and Edward T. Yu, "Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment," J. Opt. Soc. Am. B 30, 27-32 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009). [CrossRef]
  2. D. Dregely, R. Taubert, J. Dorfmuller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011). [CrossRef]
  3. J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, “Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS,” Nano Lett. 12, 1660–1667 (2012). [CrossRef]
  4. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012). [CrossRef]
  5. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012). [CrossRef]
  6. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011). [CrossRef]
  7. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [CrossRef]
  8. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007). [CrossRef]
  9. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef]
  10. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008). [CrossRef]
  11. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011). [CrossRef]
  12. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309–104307 (2007). [CrossRef]
  13. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334333–337 (2011).
  14. E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged transition conditions for electromagnetic fields at a metafilm,” IEEE Trans. Antennas Propag. 51, 2641–2651 (2003). [CrossRef]
  15. J. A. Gordon, C. L. Holloway, and A. Dienstfrey, “A physical explanation of angle-independent reflection and transmission properties of metafilms/metasurfaces,” IEEE Antennas Wirel. Propag. Lett. 8, 1127–1130 (2009). [CrossRef]
  16. H. A. Macleod, Thin-Film Optical Filter (CRC, 2010).
  17. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  18. A. D. Rakic, A. B. Djuric, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1991).
  20. P.-C. Li, Y. Zhao, A. Alu, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett. 99, 221106–221103 (2011). [CrossRef]
  21. A. Alu and N. Engheta, Optical Wave Interaction with Two-Dimensional Arrays of Plasmonic Nanoparticles (Cambridge University, 2011).
  22. R. Taubert, R. Ameling, T. Weiss, A. Christ, and H. Giessen, “From near-field to far-field coupling in the third dimension: retarded interaction of particle plasmons,” Nano Lett. 11, 4421–4424 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited