OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 99–106

Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers

Julien Fatome, Ibrahim El-Mansouri, Jean-Luc Blanchet, Stéphane Pitois, Guy Millot, Stefano Trillo, and Stefan Wabnitz  »View Author Affiliations


JOSA B, Vol. 30, Issue 1, pp. 99-106 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000099


View Full Text Article

Enhanced HTML    Acrobat PDF (1430 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that, by properly adjusting the relative state of polarization of the pump and of a weak modulation, with a frequency such that at least one of its even harmonics falls within the band of modulation instability, one obtains a fully modulated wave at the second or higher even harmonic of the initial modulation. An application of this principle to the generation of an 80 GHz optical pulse train with high extinction ratio from a 40 GHz weakly modulated pump is experimentally demonstrated using a nonzero dispersion-shifted fiber in the telecom C band.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 1, 2012
Manuscript Accepted: November 9, 2012
Published: December 12, 2012

Citation
Julien Fatome, Ibrahim El-Mansouri, Jean-Luc Blanchet, Stéphane Pitois, Guy Millot, Stefano Trillo, and Stefan Wabnitz, "Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers," J. Opt. Soc. Am. B 30, 99-106 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-1-99


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” Pis’ma Zh. Eksp. Teor. Fiz. 3, 471–476 (1966) [JETP Lett. 3, 307–310 (1966)].
  2. T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water. Part 1: theory,” J. Fluid Mech. 27, 417–430 (1967). [CrossRef]
  3. L. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Zh. Eksp. Teor. Fiz. 58, 903–911 (1970) [Sov. Phys. JETP 31, 486–490 (1970)].
  4. V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: the beginning,” Phys. D 238, 540–549 (2009). [CrossRef]
  5. N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions,” Zh. Eksp. Teor. Fiz. 89, 1542–1551 (1985) [Sov. Phys. JETP 62, 894–899 (1985)].
  6. N. N. Akhmediev and V. I. Korneev, “Modulation instability and periodic solutions of the nonlinear Schrödinger equation,” Mat. Fiz. 69, 189–194 (1986) [Theor. Mat. Phys. 69, 1089 (1986)]. [CrossRef]
  7. N. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, “N-modulation signals in a single-mode optical waveguide under nonlinear conditions,” Zh. Eksp. Teor. Fiz. 94, 159–170 (1988) [Sov. Phys. JETP 67, 89–95 (1988)].
  8. G. Cappellini and S. Trillo, “Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects,” J. Opt. Soc. Am. B 8, 824–838 (1991). [CrossRef]
  9. S. Trillo and S. Wabnitz, “Dynamics of the nonlinear modulational instability in optical fibers,” Opt. Lett. 16, 986–988 (1991). [CrossRef]
  10. G. Van Simaeys, Ph. Emplit, and M. Haelterman, “Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave,” Phys. Rev. Lett. 87, 033902 (2001). [CrossRef]
  11. S. Wabnitz and N. N. Akhmediev, “Efficient modulation frequency doubling by induced modulation instability,” Opt. Commun. 283, 1152–1154 (2010). [CrossRef]
  12. M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. N. Akhmediev, J. M. Dudley, and G. Genty, “Higher-order modulation instability in nonlinear fiber optics,” Phys. Rev. Lett. 107, 253901 (2011). [CrossRef]
  13. G. Millot, “Multiple four-wave mixing-induced modulational instability in highly birefringent fibers,” Opt. Lett. 26, 1391–1393 (2001). [CrossRef]
  14. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Zh. Eksp. Teor. Fiz. 65, 505–516 (1973) [Sov. Phys. JETP 38, 248–253 (1974)].
  15. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148–157 (1996). [CrossRef]
  16. G. J. Roske, “Some nonlinear multiphase reactions,” Stud. Appl. Math. 55, 231–238 (1976).
  17. M. G. Forest, S. P. Sheu, and O. C. Wright, “On the construction of orbits homoclinic to plane waves in integrable coupled nonlinear Schrödinger systems,” Phys. Lett. A 266, 24–33(2000). [CrossRef]
  18. M. G. Forest, D. W. McLaughlin, D. J. Muraki, and O. C. Wright, “Nonfocusing instabilities in coupled, integrable nonlinear Schrödinger PDES,” J. Nonlinear Sci. 10, 291–331 (2000). [CrossRef]
  19. O. C. Wright and M. G. Forest, “On the Bäcklund-gauge transformation and homoclinic orbits of a coupled nonlinear Schrödinger system,” Phys. D 141, 104–116 (2000).
  20. M. G. Forest and O. C. Wright, “An integrable model for stable: unstable wave coupling phenomena,” Phys. D 178, 173–189 (2003). [CrossRef]
  21. O. C. Wright, “The Darboux transformation of some Manakov systems,” Applied Math. Lett. 16, 647–652 (2003). [CrossRef]
  22. O. C. Wright, “Dressing procedure for some homoclinic connections of the Manakov system,” Applied Math. Lett. 19, 1185–1190 (2006). [CrossRef]
  23. B. Guo and L. Ling, “Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations,” Chin. Phys. Lett. 28, 110202 (2011). [CrossRef]
  24. F. Baronio, A. Degasperis, M. Conforti, and S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves,” Phys. Rev. Lett. 109, 044102 (2012). [CrossRef]
  25. K. Hammani, B. Kibler, C. Finot, P. Morin, J. Fatome, J. M. Dudley, and G. Millot, “Peregrine soliton generation and breakup in standard telecommunications fiber,” Opt. Lett. 36, 112–114 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited