OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2930–2939

Measurement of the Raman gain coefficient via inverse Raman scattering

L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian  »View Author Affiliations


JOSA B, Vol. 30, Issue 11, pp. 2930-2939 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002930


View Full Text Article

Enhanced HTML    Acrobat PDF (1218 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a new characterization technique of Raman gain materials through inverse Raman scattering (IRS). The technique is applied to silica glass optical fiber and several liquids in liquid-core optical fiber (LCOF). We obtain good quantitative agreement with a conventional technique that estimates the gain coefficient from steady-state Raman scattering measurements. Our results demonstrate that IRS is a viable tool to characterize new materials for ultralow-power nonlinear optics and all-optical switching.

© 2013 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(160.4330) Materials : Nonlinear optical materials
(190.5650) Nonlinear optics : Raman effect
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 10, 2013
Revised Manuscript: September 10, 2013
Manuscript Accepted: September 26, 2013
Published: October 24, 2013

Virtual Issues
October 25, 2013 Spotlight on Optics

Citation
L. Schneebeli, K. Kieu, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, "Measurement of the Raman gain coefficient via inverse Raman scattering," J. Opt. Soc. Am. B 30, 2930-2939 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2930


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002). [CrossRef]
  2. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12, 5269–5273 (2004). [CrossRef]
  3. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005). [CrossRef]
  4. J. G. Skinner and W. G. Nilsen, “Absolute Raman scattering cross-section measurement of 992  cm-1 line of Benzene,” J. Opt. Soc. Am. 58, 113–119 (1968). [CrossRef]
  5. M. J. Colles and J. E. Griffiths, “Relative and absolute Raman scattering cross-sections in liquids,” J. Chem. Phys. 56, 3384–3391 (1972). [CrossRef]
  6. Y. R. Shen, Principles of Nonlinear Optics (Wiley-Interscience, 1984).
  7. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University, 1991).
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  9. D. Mahgerefteh, D. L. Butler, J. Goldhar, B. Rosenberg, and G. L. Burdge, “Technique for measurement of the Raman gain coefficient in optical fibers,” Opt. Lett. 21, 2026–2028 (1996). [CrossRef]
  10. W. J. Jones and B. P. Stoicheff, “Inverse Raman spectra–induced absorption at optical frequencies,” Phys. Rev. Lett. 13, 657–659 (1964). [CrossRef]
  11. K. Kieu, L. Schneebeli, J. M. Hales, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “Demonstration of Zeno switching through inverse Raman scattering in an optical fiber,” Opt. Express 19, 12532–12539 (2011). [CrossRef]
  12. K. Kieu, L. Schneebeli, E. Merzlyak, J. M. Hales, A. DeSimone, J. W. Perry, R. A. Norwood, and N. Peyghambarian, “All-optical switching based on inverse Raman scattering in liquid-core optical fibers,” Opt. Lett. 37, 942–944 (2012). [CrossRef]
  13. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express 20, 8148–8154 (2012). [CrossRef]
  14. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett. 32, 2242–2244 (2007). [CrossRef]
  15. K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-locked fiber laser system,” IEEE Photon. Technol. Lett. 22, 1521–1523 (2010). [CrossRef]
  16. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978). [CrossRef]
  17. M. Monerie and Y. Durteste, “Direct interferometric measurement of nonlinear refractive index of optical fibers by crossphase modulation,” Electron. Lett. 23, 961–963 (1987). [CrossRef]
  18. L. Prigent and J. P. Hamaide, “Measurement of fiber nonlinear Kerr coefficient by 4-wave-mixing,” IEEE Photon. Technol. Lett. 5, 1092–1095 (1993). [CrossRef]
  19. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n(2) in various types of telecommunication fiber at 1.55  μm,” Opt. Lett. 21, 1966–1968 (1996). [CrossRef]
  20. C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13, 2170–2177 (1996). [CrossRef]
  21. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman-scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  22. Q. Lin, F. Yaman, and G. P. Agrawal, “Raman-induced polarization-dependent gain in parametric amplifiers pumped with orthogonally polarized lasers,” IEEE Photon. Technol. Lett. 18, 397–399 (2006). [CrossRef]
  23. R. W. Hellwarth, A. Owyoung, and N. George, “Origin of nonlinear refractive index of liquid CCl4,” Phys. Rev. A 4, 2342–2347 (1971). [CrossRef]
  24. Y. Kato and H. Takuma, “Experimental study on wavelength dependence of Raman scattering cross sections,” J. Chem. Phys. 54, 5398–5402 (1971). [CrossRef]
  25. K. T. Schomacker, J. K. Delaney, and P. M. Champion, “Measurements of the absolute Raman cross-sections of Benzene,” J. Chem. Phys. 85, 4240–4247 (1986). [CrossRef]
  26. M. O. Trulson and R. A. Mathies, “Raman cross-section measurements in the visible and ultraviolet using an integrating cavity–application to benzene, cyclohexane, and cacodylate,” J. Chem. Phys. 84, 2068–2074 (1986). [CrossRef]
  27. N. Abe, M. Wakayama, and M. Ito, “Absolute Raman intensities of liquids,” J. Raman Spectrosc. 6, 38–41 (1977). [CrossRef]
  28. F. J. McClung and D. Weiner, “Measurement of Raman scattering cross sections for use in calculating stimulated Raman scattering effects,” J. Opt. Soc. Am. 54, 641–643 (1964). [CrossRef]
  29. J. B. Grun, A. K. McQuillan, and B. P. Stoicheff, “Intensity and gain measurements on stimulated Raman emission in liquid O2 and N2,” Phys. Rev. 180, 61–68 (1969). [CrossRef]
  30. T. C. Damen, R. C. C. Leite, and S. P. S. Potro, “Angular dependence of Raman scattering from benzene excited by He–Ne cw laser,” Phys. Rev. Lett. 14, 9–11 (1965). [CrossRef]
  31. A. C. Albrecht and M. C. Hutley, “Dependence of vibrational Raman intensity on wavelength of incident light,” J. Chem. Phys. 55, 4438–4443 (1971). [CrossRef]
  32. W. R. Hess, H. Hacker, H. W. Schrotte, and J. Brandmul, “On measurement of intensity and depolarization ratio of Raman lines with laser excitation,” Z. Angew. Phys. 27, 233–238 (1969).
  33. A. Hoffmann, S. Keller, B. Schrader, R. Ferwerda, and J. H. Vandermaas, “Polarization measurements in near-infrared Fourier-transform spectroscopy,” J. Raman Spectrosc. 22, 497–503 (1991). [CrossRef]
  34. W. Proffitt and S. P. S. Porto, “Depolarization ratio in Raman spectroscopy as a function of frequency,” J. Opt. Soc. Am. 63, 77–84 (1973). [CrossRef]
  35. M. E. Lines, “Raman-gain estimates for high-gain optical fibers,” J. Appl. Phys. 62, 4363–4370 (1987). [CrossRef]
  36. H. J. Marrinan and N. Sheppard, “Relative intensities of the Raman lines of carbon tetrachloride, chloroform, and methylene chloride,” J. Opt. Soc. Am. 44, 815–819 (1954). [CrossRef]
  37. O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Raman-induced frequency shift in CS2-filled integrated liquid-core optical fiber,” Submitted to Optics Letters.
  38. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  39. B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17, 704–715 (1999). [CrossRef]
  40. A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys. 94, 6167–6174 (2003). [CrossRef]
  41. H. H. Marvin, “The selective transmission and the dispersion of the liquid chlorides,” Phys. Rev. 34, 161–186 (1912).
  42. I. H. Malitson, “Interspecimen comparison of refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965). [CrossRef]
  43. W. R. L. Clements and B. P. Stoicheff, “Raman linewidths for stimulated threshold and gain calculations,” Appl. Phys. Lett. 12, 246–248 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited