OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2970–2979

Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach

Jérémy Butet, Benjamin Gallinet, Krishnan Thyagarajan, and Olivier J. F. Martin  »View Author Affiliations


JOSA B, Vol. 30, Issue 11, pp. 2970-2979 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002970


View Full Text Article

Enhanced HTML    Acrobat PDF (643 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A surface integral formulation for the second-harmonic generation (SHG) from periodic metallic–dielectric nanostructures is described. This method requires the discretization of the scatterers’ surface in the unit cell only. All the physical quantities involved in this problem are derived in the unit cell by applying specific periodic boundary conditions both at the fundamental and the second-harmonic (SH) frequencies. Both the fundamental and the SH electric fields are computed using the method of moments and periodic Green’s function evaluated with the Ewald’s method. The accuracy of the method is carefully assessed using two specific cases, namely the surface plasmon enhancement of SHG from a gold film and the SHG from L-shaped nanoparticle arrays. These two examples emphasize the accuracy and versatility of the proposed method, which can be applied to a broad range of periodic metallic structures, including plasmonic arrays on arbitrary substrates and metamaterials.

© 2013 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 18, 2013
Revised Manuscript: August 22, 2013
Manuscript Accepted: September 27, 2013
Published: October 25, 2013

Citation
Jérémy Butet, Benjamin Gallinet, Krishnan Thyagarajan, and Olivier J. F. Martin, "Second-harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: a surface integral approach," J. Opt. Soc. Am. B 30, 2970-2979 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2970


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012). [CrossRef]
  2. S. Roke and G. Gonella, “Nonlinear light scattering and spectroscopy of particles and droplets in liquids,” Annu. Rev. Phys. Chem. 63, 353–378 (2012). [CrossRef]
  3. E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002). [CrossRef]
  4. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Interferences between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles,” Phys. Rev. Lett. 105, 077401 (2010). [CrossRef]
  5. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010). [CrossRef]
  6. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11, 5519–5523 (2011). [CrossRef]
  7. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express 20, 220–227 (2012). [CrossRef]
  8. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20, 10498–10508 (2012). [CrossRef]
  9. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. F. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20, 12860–12865 (2012). [CrossRef]
  10. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic meta-materials,” Science 313, 502–504 (2006). [CrossRef]
  11. K. Thyagarajan, J. Butet, and O. J. F. Martin, “Augmenting second harmonic generation using Fano resonances in plasmonic systems,” Nano Lett. 13, 1847–1851 (2013).
  12. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef]
  13. C. C. Neascu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005). [CrossRef]
  14. C. Awada, C. Jonin, F. Kessi, P. M. Adam, S. Kostcheev, R. Bachelot, P. Royer, M. Samah, I. Russier-Antoine, E. Benichou, G. Bachelier, and P.-F. Brevet, “Polarized second harmonic response of square, hexagonal and random arrays of gold metallic nanocylinders,” Opt. Mater. 33, 1440–1444 (2011). [CrossRef]
  15. B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express 14, 950–955 (2006). [CrossRef]
  16. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipolar analysis of second-harmonic radiation from gold nanoparticles,” Opt. Express 16, 17196–17208 (2008). [CrossRef]
  17. V. K. Valev, X. Zheng, C. G. Biris, A. V. Silhanek, V. Volskiy, B. De Clercq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1, 36–45 (2011). [CrossRef]
  18. V. K. Valev, “Characterization of nanostructured plasmonic surfaces with second harmonic generation,” Langmuir 28, 15454–15471 (2012). [CrossRef]
  19. A. Capretti, G. F. Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, and L. Dal Negro, “Multipolar second harmonic generation from planar arrays of Au nanoparticles,” Opt. Express 20, 15797–15806 (2012). [CrossRef]
  20. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12, 3207–3212 (2012). [CrossRef]
  21. J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett. 13, 1787–1792 (2013).
  22. H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett. 12, 673–677 (2012). [CrossRef]
  23. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett. 12, 1697–1701 (2012). [CrossRef]
  24. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009). [CrossRef]
  25. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: local surface and nonlocal bulk contributions,” Phys. Rev. B 82, 235403 (2010). [CrossRef]
  26. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric materials: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004). [CrossRef]
  27. Y. Pavlyukh and W. Hübner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70, 245434 (2004). [CrossRef]
  28. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Nonlinear Mie theory for the second harmonic generation in metallic nanoshells,” J. Opt. Soc. Am. B 29, 2213–2221 (2012). [CrossRef]
  29. A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic generation and sum-frequency scattering,” Phys. Rev. B 79, 155420 (2009). [CrossRef]
  30. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008). [CrossRef]
  31. J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express 19, 23386–23399 (2011). [CrossRef]
  32. Y. Zeng, W. Hoyer, J. J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009). [CrossRef]
  33. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010). [CrossRef]
  34. M. A. Vincenti, D. Ceglia, V. Roppo, and M. Scalora, “Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths,” Opt. Express 19, 2064–2078 (2011). [CrossRef]
  35. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface,” Phys. Rev. B 86, 115451 (2012). [CrossRef]
  36. T. Laroche, F. I. Baida, and D. Van Labeke, “Three-dimensional finite-difference time-domain study of enhanced second-harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip,” J. Opt. Soc. Am. B 22, 1045–1051 (2005). [CrossRef]
  37. B.-L. Wang, M.-L. Ren, J.-F. Li, and Z.-Y. Li, “Plasmonic coupling effect between two gold nanospheres for efficient second-harmonic generation,” J. Appl. Phys. 112, 083102 (2012). [CrossRef]
  38. A. Benedetti, M. Centini, M. Bertolotti, and C. Sibilia, “Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis,” Opt. Express 19, 26752–26767 (2011). [CrossRef]
  39. C. Forestiere, A. Capretti, and G. Miano, “Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources,” J. Opt. Soc. Am. B 30, 2355–2364 (2013). [CrossRef]
  40. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulation of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009). [CrossRef]
  41. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett. 11, 482–487 (2011). [CrossRef]
  42. W. Nakagawa, R.-C. Tyan, and Y. Fainman, “Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation,” J. Opt. Soc. Am. A 19, 1919–1928 (2002). [CrossRef]
  43. B. Bai and J. Turunen, “Fourier modal method for the analysis of second-harmonic generation in two-dimensionally periodic structures containing anisotropic materials,” J. Opt. Soc. Am. B 24, 1105–1112 (2007). [CrossRef]
  44. W. L. Schaich, “Second harmonic generation by periodically-structured metal surfaces,” Phys. Rev. B 78, 195416 (2008). [CrossRef]
  45. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A 27, 2261–2271 (2010). [CrossRef]
  46. B. Gallinet and O. J. F. Martin, “Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation,” Photon. Nanostr. Fundam. Appl. 8, 278–284 (2010). [CrossRef]
  47. I. Stevanovic, P. Crespo-Valero, K. Blagovic, F. Bongard, and J. R. Mosig, “Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation,” IEEE Trans. Microw. Theory Tech. 54, 3688–3697 (2006). [CrossRef]
  48. S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982). [CrossRef]
  49. T. K. Wu and L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977). [CrossRef]
  50. R. F. Harrington, Field Computation by Moment Methods (Macmillan, 1968).
  51. G. R. Cowper, “Gaussian quadrature formulas for triangle,” Int. J. Numer. Methods Eng. 7, 405–408 (1973). [CrossRef]
  52. I. Hanninen, M. Taskinen, and J. Sarvas, “Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions,” PIER 63, 243–278 (2006).
  53. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980). [CrossRef]
  54. V. Mizrahi and J. E. Sipe, “Phenomenological treatment of surface second-harmonic generation,” J. Opt. Soc. Am. B 5, 660–667 (1988). [CrossRef]
  55. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys. 96, 3626–3634 (2004). [CrossRef]
  56. A. Liebsch, “Second-harmonic generation at simple metal surfaces,” Phys. Rev. Lett. 61, 1233–1236 (1988). [CrossRef]
  57. M. Corvi and W. L. Schaich, “Hydrodynamic-model calculation of second-harmonic generation at a metal surface,” Phys. Rev. B 33, 3688–3695 (1986). [CrossRef]
  58. T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces,” in Nonlinear Surface Electromagnetic Phenomena, H.-E. Ponath and G. I. Stegeman, eds. (Elsevier, 1991).
  59. C. Forestiere, G. Iadarola, G. Rubinacci, A. Tamburrino, L. Dal Negro, and G. Miano, “Surface integral formulations for the design of plasmonic nanostructures,” J. Opt. Soc. Am. A 29, 2314–2327 (2012). [CrossRef]
  60. J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles: erratum,” Opt. Express 21, 10205–10206 (2013). [CrossRef]
  61. W. Fan, S. Zhang, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Second harmonic generation from patterned GaAs inside a subwavelength metallic hole array,” Opt. Express 14, 9570–9575 (2006). [CrossRef]
  62. E. H. Barakat, M.-P. Bernal, and F. I. Baida, “Second harmonic generation enhancement by use of annular aperture arrays embedded into silver and filled by lithium niobate,” Opt. Express 18, 6530–6536(2010). [CrossRef]
  63. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
  64. A. M. Kern and O. J. F. Martin, “Pitfalls in the determination of optical cross sections from surface integral equation simulations,” IEEE Trans. Antennas Propag. 58, 2158–2161 (2010). [CrossRef]
  65. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  66. H. Sonnenberg and H. Heffner, “Experimental study of optical second-harmonic generation in silver,” J. Opt. Soc. Am. 58, 209–211 (1968). [CrossRef]
  67. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in silver films,” Phys. Rev. Lett. 33, 1531–1534 (1974). [CrossRef]
  68. R. Naraoka, H. Okawa, K. Hashimoto, and K. Kajikawa, “Surface plasmon resonance enhanced second-harmonic generation in Kretschmann configuration,” Opt. Commun. 248, 249–256 (2005). [CrossRef]
  69. B. K. Canfield, S. Kujala, K. Jefimovs, Y. Svirko, J. Turunen, and M. Kauranen, “A macroscopic formalism to describe the second-order nonlinear optical response of nanostructures,” J. Opt. A 8, S278–S284 (2006). [CrossRef]
  70. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011). [CrossRef]
  71. R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett. 110, 093902 (2013). [CrossRef]
  72. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006). [CrossRef]
  73. T. Xu, X. Jiao, G.-P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: effects of aperture symmetry and lattice arrangement,” Opt. Express 15, 13894–13906 (2007). [CrossRef]
  74. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Second-harmonic generation in nonlinear left-handed metamaterials,” J. Opt. Soc. Am. B 23, 529–534 (2006). [CrossRef]
  75. A. Rose, D. Huang, and D. R. Smith, “Nonlinear interference and unidirectional wave mixing in metamaterials,” Phys. Rev. Lett. 110, 063901 (2013). [CrossRef]
  76. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013). [CrossRef]
  77. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986). [CrossRef]
  78. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]
  79. A. Farhang and O. J. F. Martin, “Plasmon delocalization onset in finite sized nanostructures,” Opt. Express 19, 11387–11396 (2011). [CrossRef]
  80. Y. P. Chen, W. E. I. Sha, W. C. H. Choy, L. Jiang, and W. C. Chew, “Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green’s function,” Opt. Express 20, 20210–20221 (2012). [CrossRef]
  81. Y. P. Chen, W. C. Chew, and L. Jiang, “A new Green’s function formulation for modeling homogeneous objects in layered medium,” IEEE Trans. Antennas Propag. 60, 4766–4776 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited