OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2980–2983

Ultralow-repetition-rate pulses with ultralow jitter generated by passive mode-locking of an optoelectronic oscillator

Alexander Sherman and Moshe Horowitz  »View Author Affiliations

JOSA B, Vol. 30, Issue 11, pp. 2980-2983 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the generation of an ultralow-repetition-rate pulse train with a repetition rate of 19.6 kHz by passive mode-locking of an optoelectronic oscillator. The pulse-to-pulse timing jitter equals 0.06 ppm of the repetition time of the pulses. No significant dependence of pulse duration, pulse waveform, and timing jitter was observed when the cavity length was changed from 150 to 10,400 m. A simple theoretical model for calculating the dependence of the jitter on the cavity length is given.

© 2013 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.0250) Optical devices : Optoelectronics
(230.4910) Optical devices : Oscillators
(320.5550) Ultrafast optics : Pulses

ToC Category:
Optical Devices

Original Manuscript: July 19, 2013
Revised Manuscript: September 23, 2013
Manuscript Accepted: September 26, 2013
Published: October 25, 2013

Alexander Sherman and Moshe Horowitz, "Ultralow-repetition-rate pulses with ultralow jitter generated by passive mode-locking of an optoelectronic oscillator," J. Opt. Soc. Am. B 30, 2980-2983 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. W. Shrader and V. G. Hansen, “MTI radar,” in Radar Handbook, M. I. Skolnik, ed. (McGraw-Hill, 2008), pp. 2.12–2.100.
  2. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantisation in figure eight fibre laser,” IEEE Electron. Lett. 28, 67–68 (1992). [CrossRef]
  3. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816 (2005). [CrossRef]
  4. R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, and O. Gat, “Spectral sidebands and multipulse formation in passively mode-locked lasers,” Phys. Rev. A 83, 043831 (2011). [CrossRef]
  5. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22, 799–801 (1997). [CrossRef]
  6. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16, 21936–21941 (2008). [CrossRef]
  7. S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, “Mode-locked fibre lasers with high-energy pulses,” in Laser Systems for Applications, K. Jakubczak, ed. (InTech, 2011), pp. 39–58.
  8. Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh, “Ultralow-repetition-rate, high-energy, polarization-maintaining, Er-doped, ultrashort-pulse fiber laser using single-wall-carbon-nanotube saturable absorber,” Opt. Express 18, 20673–20680 (2010). [CrossRef]
  9. J. S. Lee and C. Nguyen, “Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate,” IEEE Microw. Wirel. Compon. Lett. 11, 208–210 (2001). [CrossRef]
  10. F. Zito, D. Pepe, and D. Zito, “UWB CMOS monocycle pulse generator,” IEEE Trans. Circuits Syst. I Reg. Papers 57, 2654–2664 (2010). [CrossRef]
  11. L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-chip CMOS pulse generator for UWB systems,” IEEE J. Solid-State Circuits 41, 1551–1561 (2006). [CrossRef]
  12. E. C. Levy and M. Horowitz, “Single-cycle radio-frequency pulse generation by an optoelectronic oscillator,” Opt. Express 19, 17599–17608 (2011). [CrossRef]
  13. M. Ramaswamy, M. Ulman, J. Paye, and J. G. Fujimoto, “Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A12O3 laser,” Opt. Lett. 18, 1822–1824 (1993). [CrossRef]
  14. G. N. Gibson, R. Klank, F. Gibson, and B. E. Bouma, “Electro-optically cavity-dumped ultrashort-pulse Ti:sapphire oscillator,” Opt. Lett. 21, 1055–1057 (1996). [CrossRef]
  15. Agilent Technologies Inc., “Infiniium DCA-J Agilent 86100C technical specification,” http://cp.literature.agilent.com/litweb/pdf/5989-0278EN.pdf .
  16. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993). [CrossRef]
  17. O. Okusaga, J. P. Cahill, A. Docherty, C. R. Menyuk, and W. Zhou, “Spontaneous inelastic Rayleigh scattering in optical fibers,” Opt. Lett. 38, 549–551 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited