OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2992–2998

Efficient and broadband guided wave one-way mode-order conversion with theoretical and numerical analysis

Kadir Üstün and Hamza Kurt  »View Author Affiliations


JOSA B, Vol. 30, Issue 11, pp. 2992-2998 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002992


View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article, an efficient method of asymmetric conversion of guided modes is investigated. From a basic excitation consisting of (mainly) the lowest-order mode of the input multimode strip waveguide, we achieve a conversion efficiency of 60% on average, in the forward propagation case, while the backward propagation is suppressed below 10%. The analytical formulation is based on electromagnetic wave theory with orthogonality relations. Affirmative results between the theoretical and numerical findings based on time and frequency domain analysis are observed. The results of this study will increase the ease of implementing an optical isolator if the breaking time-reversal symmetry could be achieved by nonlinear optics or magneto-optic configurations.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: July 12, 2013
Revised Manuscript: September 8, 2013
Manuscript Accepted: September 26, 2013
Published: October 25, 2013

Citation
Kadir Üstün and Hamza Kurt, "Efficient and broadband guided wave one-way mode-order conversion with theoretical and numerical analysis," J. Opt. Soc. Am. B 30, 2992-2998 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004). [CrossRef]
  2. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008). [CrossRef]
  3. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009). [CrossRef]
  4. S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials,” Appl. Phys. Lett. 97, 201113 (2010). [CrossRef]
  5. S. Y. Liu, W. L. Lu, Z. F. Lin, and S. T. Chui, “Molding reflection from metamaterials based on magnetic surface plasmons,” Phys. Rev. B 84, 045425 (2011). [CrossRef]
  6. J. Yu, H. Chen, Y. Wu, and S. Liu, “Magnetically manipulable perfect unidirectional absorber based on nonreciprocal magnetic surface plasmon,” Europhys. Lett. 100, 47007 (2012). [CrossRef]
  7. X.-S. Lin, W.-Q. Wu, H. Zhou, K.-F. Zhou, and S. Lan, “Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects,” Opt. Express 14, 2429–2439 (2006). [CrossRef]
  8. S. Pereira, P. Chak, J. E. Sipe, L. Tkeshelashvili, and K. Busch, “All-optical diode in an asymmetrically apodized Kerr nonlinear microresonator system,” Photon. Nanostr. Fundam. Appl. 2, 181–190 (2004). [CrossRef]
  9. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3, 91–94 (2009). [CrossRef]
  10. K. Gallo and G. Assanto, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001). [CrossRef]
  11. Z.-Y. Yu, F. Xu, X.-W. Lin, X.-S. Song, X.-S. Qian, Q. Wang, and Y.-Q. Lu, “Tunable broadband isolator based on electro-optically induced linear gratings in a nonlinear photonic crystal,” Opt. Lett. 35, 3327–3329 (2010). [CrossRef]
  12. R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, 1960).
  13. L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, “Nonreciprocal light propagation in a silicon photonic circuit,” Science 333, 729–733 (2011). [CrossRef]
  14. C. Wang, X. L. Zhong, and Z. Y. Li, “Linear and passive silicon optical isolator,” Sci. Rep. 2, 674 (2012).
  15. A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80, 155117 (2009). [CrossRef]
  16. H. Kurt, D. Yilmaz, A. Akosman, and E. Ozbay, “Asymmetric light propagation in chirped photonic crystal waveguides,” Opt. Express 20, 20635–20646 (2012). [CrossRef]
  17. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popovic, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, “Comment on nonreciprocal light propagation in a silicon photonic circuit,” Science 335, 38-b (2011).
  18. C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, and B. J. Eggleton, “Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide,” Opt. Express 19, 20681–20690 (2011). [CrossRef]
  19. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007). [CrossRef]
  20. K. Üstün and H. Kurt, “Compact coupling of light from conventional photonic wire to slow light waveguides,” J. Appl. Phys. 110, 113109 (2011). [CrossRef]
  21. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008). [CrossRef]
  22. K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010). [CrossRef]
  23. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011). [CrossRef]
  24. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater. 12, 108–113 (2012). [CrossRef]
  25. A. A. Maznev, A. G. Every, and O. B. Wright, “Reciprocity in reflection and transmission: what is a ‘phonon diode’?” Wave Motion 50, 776–784 (2013). [CrossRef]
  26. K. Üstün and H. Kurt, “Slow light structure with enhanced delay–bandwidth product,” J. Opt. Soc. Am. B 29, 2403–2409 (2012). [CrossRef]
  27. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989), Chap. 7.
  28. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited