OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3111–3116

Mid-infrared active graphene nanoribbon plasmonic waveguide devices

Kelvin J. A. Ooi, Hong Son Chu, Lay Kee Ang, and Ping Bai  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3111-3116 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003111


View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Doped graphene emerges as a strong contender for active plasmonic material in mid-infrared wavelengths due to the versatile external control of its permittivity function and also its highly compressed graphene surface plasmon (GSP) wavelength. In this paper, we design active plasmonic waveguide devices based on electrical modulation of doped graphene nanoribbons (GNRs) on a voltage-gated inhomogeneous dielectric layer. We first develop figure-of-merit (FoM) formulae to characterize the performance of passive and active graphene nanoribbon waveguides. Based on the FoMs, we choose optimal GNRs to build a plasmonic shutter, which consists of a GNR placed on top of an inhomogeneous SiO2 substrate supported by a Si nanopillar. Simulation studies show that for a simple, 50 nm long plasmonic shutter, the modulation contrast can exceed 30 dB. The plasmonic shutter is further extended to build a four-port active power splitter and an eight-port active network, both based on GNR cross-junction waveguides. For the active power splitter, the GSP power transmission at each waveguide arm can be independently controlled by an applied gate voltage with high-modulation contrast and nearly equal power-splitting proportions. From the construct of the eight-port active network, we see that it is possible to scale up the GNR cross-junction waveguides into large and complex active waveguide networks, showing great potential in an exciting new area of mid-infrared graphene plasmonic integrated nanocircuits.

© 2013 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: September 17, 2013
Revised Manuscript: October 16, 2013
Manuscript Accepted: October 16, 2013
Published: November 4, 2013

Citation
Kelvin J. A. Ooi, Hong Son Chu, Lay Kee Ang, and Ping Bai, "Mid-infrared active graphene nanoribbon plasmonic waveguide devices," J. Opt. Soc. Am. B 30, 3111-3116 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3111

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited