OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3184–3192

Tapered diode-pumped continuous-wave alexandrite laser

Ersen Beyatli, Ilyes Baali, Bernd Sumpf, Götz Erbert, Alfred Leitenstorfer, Alphan Sennaroglu, and Umit Demirbas  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3184-3192 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003184


View Full Text Article

Enhanced HTML    Acrobat PDF (576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a low-cost and efficient alexandrite (Cr:BeAl2O4) laser that is pumped by a high-brightness tapered diode laser (TDL). The tapered diode (TD) provides up to 1.1 W of output power and its wavelength can be fine-tuned to either 680.4 nm (R1 line) or 678.5 nm (R2 line) for efficient in-line pumping. Continuous-wave (cw) output powers of 200 mW, slope efficiencies as high as 38%, and a cw tuning range extending from 724 to 816 nm have been achieved. To the best of our knowledge, the cw power levels and slope efficiencies are the highest demonstrated so far from such a minimal complexity and low-cost system based on the alexandrite gain medium. Consequently, TDs operating in the red spectral region have the potential to become the standard pump sources for cw alexandrite lasers in the near future.

© 2013 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.7300) Lasers and laser optics : Visible lasers
(160.3380) Materials : Laser materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 5, 2013
Revised Manuscript: October 12, 2013
Manuscript Accepted: October 14, 2013
Published: November 12, 2013

Citation
Ersen Beyatli, Ilyes Baali, Bernd Sumpf, Götz Erbert, Alfred Leitenstorfer, Alphan Sennaroglu, and Umit Demirbas, "Tapered diode-pumped continuous-wave alexandrite laser," J. Opt. Soc. Am. B 30, 3184-3192 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Lagatsky, C. T. A. Brown, and W. Sibbett, “Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser,” Opt. Express 12, 3928–3933 (2004). [CrossRef]
  2. U. Demirbas, R. Uecker, D. Klimm, and J. Wang, “Low-cost, broadly tunable (375–433  nm & 746–887  nm) Cr:LiCAF laser pumped by one single-spatial-mode diode,” Appl. Opt. 51, 8440–8448 (2012). [CrossRef]
  3. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994). [CrossRef]
  4. Y. Ishida and K. Naganuma, “Compact diode-pumped all-solid-state femtosecond Cr4+:YAG laser,” Opt. Lett. 21, 51–53 (1996). [CrossRef]
  5. D. L. Sipes, “Highly efficient neodymium–yttrium aluminum garnet laser end pumped by a semiconductor-laser array,” Appl. Phys. Lett. 47, 74–76 (1985). [CrossRef]
  6. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2  μm,” Opt. Lett. 36, 948–950 (2011). [CrossRef]
  7. D. Li, U. Demirbas, A. Benedick, A. Sennaroglu, J. G. Fujimoto, and F. X. Kärtner, “Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers,” Opt. Express 20, 23422–23435 (2012). [CrossRef]
  8. L. G. DeShazer and K. W. Kangas, “Extended infrared operation of titanium sapphire laser,” in Conference on Lasers and Electro Optics (1987), Vol. 14, pp. 296–298.
  9. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 5  fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001). [CrossRef]
  10. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  11. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34, 3334–3336 (2009). [CrossRef]
  12. M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249, 83–86 (2013). [CrossRef]
  13. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20, 13677–13683 (2012). [CrossRef]
  14. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett. 36, 304–306 (2011). [CrossRef]
  15. P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20, 20629–20634 (2012). [CrossRef]
  16. A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K.-H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20  fs pulses,” Opt. Express 19, 12156–12163 (2011). [CrossRef]
  17. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+ a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988). [CrossRef]
  18. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, “Laser performance of LiSAIF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989). [CrossRef]
  19. L. K. Smith, S. A. Payne, W. L. Kway, L. L. Chase, and B. H. T. Chai, “Investigation of the laser properties of Cr3+:LiSrGaF6,” IEEE J. Quantum Electron. 28, 2612–2618 (1992). [CrossRef]
  20. Z. Chen and G. Zhang, “Free-running emerald laser pumped by laser diode,” Chin. Opt. Lett. 4, 649–651 (2006).
  21. S. T. Lai, “Highly efficient emerald laser,” J. Opt. Soc. Am. B 4, 1286–1290 (1987). [CrossRef]
  22. J. C. Walling, “Tunable cw alexandrite lasers,” J. Opt. Soc. Am. 69, 1436 (1979).
  23. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable laser performance in BeAl2O4Cr3+,” Opt. Lett. 4, 182–183 (1979). [CrossRef]
  24. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. Odell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980). [CrossRef]
  25. J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers—development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985). [CrossRef]
  26. O. Svelto, Principles of Lasers (Plenum, 1989).
  27. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef]
  28. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003). [CrossRef]
  29. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050  nm,” J. Opt. Soc. Am. B 13, 481–491 (1996). [CrossRef]
  30. S. Sakadzic, U. Demirbas, T. R. Mempel, A. Moore, S. Ruvinskaya, D. A. Boas, A. Sennaroglu, F. X. Kartner, and J. G. Fujimoto, “Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser,” Opt. Express 16, 20848–20863 (2008). [CrossRef]
  31. E. Sorokin, “Solid-state materials for few-cycle pulse generation and amplification,” in Few-Cycle Laser Pulse Generation and Its Applications, F. X. Kärtner, ed., Vol. 95 of Topics in Applied Physics (Springer-Verlag, 2004), pp. 3–73.
  32. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Low-cost, single-mode diode-pumped Cr:colquiriite lasers,” Opt. Express 17, 14374–14388 (2009). [CrossRef]
  33. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning of alexandrite laser at elevated temperatures,” in Advanced Solid State Lasers, Vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), paper  CL3.
  34. F. Druon, F. Balembois, and P. Georges, “New laser crystals for the generation of ultrashort pulses,” C. R. Phys. 8, 153–164 (2007). [CrossRef]
  35. A. Sanchez, R. E. Fahey, A. J. Strauss, and R. L. Aggarwal, “Room-temperature continuous-wave operation of a Ti:Al2O3 laser,” Opt. Lett. 11, 363–364 (1986). [CrossRef]
  36. R. Scheps, J. F. Myers, T. R. Glesne, and H. B. Serreze, “Monochromatic end-pumped operation of an alexandrite laser,” Opt. Commun. 97, 363–366 (1993). [CrossRef]
  37. J. K. Jabczynski, W. Zendzian, Z. Mierczyk, and Z. Frukacz, “Chromium-doped LiCAF laser passively Q switched with a V3+:YAG crystal,” Appl. Opt. 40, 6638–6645 (2001). [CrossRef]
  38. M. L. Shand and J. C. Walling, “Excited-state absorption in the lasing wavelength region of alexandrite,” IEEE J. Quantum Electron. 18, 1152–1155 (1982). [CrossRef]
  39. L. J. Atherton, S. A. Payne, and C. D. Brandle, “Oxide and fluoride laser crystals,” Annu. Rev. Mater. Sci. 23, 453–502 (1993). [CrossRef]
  40. M. Stalder, M. Bass, and B. H. T. Chai, “Thermal quenching of fluoresence in chromium-doped fluoride laser crystals,” J. Opt. Soc. Am. B 9, 2271–2273 (1992). [CrossRef]
  41. J. M. Eichenholz and M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998). [CrossRef]
  42. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  43. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  44. M. Srotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, J. Hoeffner, and B. Jungbluth, “Broadly tunable, diode pumped alexandrite laser,” in Advanced Solid-State Lasers (Optical Society of America, 2013), paper  ATu3A.42.
  45. J. C. Walling, O. G. Peterson, and R. C. Morris, “Tunable cw alexandrite laser,” IEEE J. Quantum Electron. 16, 120–121 (1980). [CrossRef]
  46. H. Samelson and D. J. Harter, “High-pressure mercury arc lamp excited cw alexandrite lasers,” in Conference on Lasers and Electro-Optics, Anaheim, California, June19–22 1984 (Optical Society of America, 1984).
  47. S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 56642–56644 (1984).
  48. J. W. Kuper and D. C. Brown, “Green pumped alexandrite lasers,” Proc. SPIE 5707, 265–270 (2005). [CrossRef]
  49. J. W. Kuper and D. C. Brown, “High efficiency CW green pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006). [CrossRef]
  50. M. Lando, Y. Shimony, R. M. J. Benmair, D. Abramovich, V. Krupkin, and A. Yogev, “Visible solar-pumped lasers,” Opt. Mater. 13, 111–115 (1999). [CrossRef]
  51. R. Scheps, B. M. Gately, J. F. Myers, J. S. Krasinski, and D. F. Heller, “Alexandrite laser pumped by semiconductor-lasers,” Appl. Phys. Lett. 56, 2288–2290 (1990). [CrossRef]
  52. X. Peng, A. Marrakchi, J. C. Walling, and D. F. Heller, “Watt-level red and UV output from a CW diode array-pumped tunable alexandrite laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2005), paper  CMAA5.
  53. M. J. Damzen, G. M. Thomas, and A. Minassian, “Multi-watt diode-pumped alexandrite laser operation,” in CLEO Europe, Munich, May12–16, 2013.
  54. U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, “Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers,” Opt. Express 19, 20444–20461 (2011). [CrossRef]
  55. B. Sumpf, P. Adamiec, M. Zorn, H. Wenzel, and G. Erbert, “Nearly diffraction limited tapered lasers at 675  nm with 1  W output power and conversion efficiencies above 30%,” IEEE Photon. Technol. Lett. 23, 266–268 (2011). [CrossRef]
  56. E. Beyatlı, A. Sennaroglu, and U. Demirbas, “Self-Q-switched Cr:LiCAF laser,” J. Opt. Soc. Am. B 30, 914–921 (2013). [CrossRef]
  57. B. C. Weber and A. Hirth, “Efficient single-pulse emission with submicrosecond duration from a Cr:LiSAF laser,” Opt. Commun. 128, 158–165 (1996). [CrossRef]
  58. B. C. Weber and A. Hirth, “Presentation of a new and simple technique of Q-switching with a LiSrAlf(6): Cr3+ oscillator,” Opt. Commun. 149, 301–306 (1998). [CrossRef]
  59. I. Freund, “Self-Q-switching in ruby lasers,” Appl. Phys. Lett. 12, 388 (1968). [CrossRef]
  60. R. J. Collins, L. O. Braun, and D. R. Dean, “A new method of giant pulsing ruby lasers,” Appl. Phys. Lett. 12, 392 (1968). [CrossRef]
  61. M. Birnbaum and C. L. Fincher, “The ruby laser: pumped by a pulsed argon ion laser,” Appl. Phys. Lett. 12, 225–227 (1968). [CrossRef]
  62. A. Szabo and L. E. Erickson, “Self-Q-switching of ruby lasers at 77 degrees K,” IEEE J. Quantum Electron. QE-4, 692 (1968). [CrossRef]
  63. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966). [CrossRef]
  64. J. A. Caird, L. G. DeShazer, and J. Nella, “Characteristics of room-temperature 2.3-μm laser emission from Tm3+ in YAG and YAlO3,” IEEE J. Quantum Electron. 11, 874–881 (1975). [CrossRef]
  65. U. Demirbas, S. Eggert, and A. Leitenstorfer, “Compact and efficient Cr:LiSAF lasers pumped by one single-spatial-mode diode: a minimal cost approach,” J. Opt. Soc. Am. B 29, 1894–1903 (2012). [CrossRef]
  66. K. Torizuka, M. Yamashita, and T. Yabiku, “Continuous-wave alexandrite laser-pumped by a direct-current mercury arc lamp,” Appl. Opt. 32, 7394–7398 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited