OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 238–243

Double-loop microtrap for ultracold atoms

Bin Jian and William Arie van Wijngaarden  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 238-243 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (557 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A microtrap consisting of two concentric circular wire loops having radii of 300 and 660 μm, respectively, is demonstrated. The three-dimensional trap has a maximum depth of more than 1 mK, and the trap center position as measured below the atom chip surface can be adjusted by applying a small-bias magnetic field. More than 105Rb87 atoms were transferred into the microtrap from a magneto-optical trap and remained trapped for several hundred milliseconds, which is limited by the background pressure. The loading of a linear array of three microtraps is also demonstrated. The trap dimensions are readily scaled to micrometer size, which is of interest for creating a one- and two-dimensional array of neutral atom traps on a single atom chip.

© 2013 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: October 22, 2012
Revised Manuscript: December 4, 2012
Manuscript Accepted: December 4, 2012
Published: January 3, 2013

Bin Jian and William Arie van Wijngaarden, "Double-loop microtrap for ultracold atoms," J. Opt. Soc. Am. B 30, 238-243 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Weinstein and K. G. Libbrecht, “Microscopic magnetic traps for neutral atoms,” Phys. Rev. A 52, 4004–4009 (1995). [CrossRef]
  2. R. Folman, P. Krager, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic atom optics: from wires to an atom chip,” Adv. At. Mol. Opt. Phys. 48, 263–356 (2002). [CrossRef]
  3. J. Fortagh and C. Zimmerman, “Magnetic microtraps for ultracold atoms,” Rev. Mod. Phys. 79, 235–289 (2007). [CrossRef]
  4. W. Hansel, P. Hommelhoff, T. W. Hänsch, and J. Reichel, “Bose Einstein condensation on a microelectronic chip,” Nature 413, 498–501 (2001). [CrossRef]
  5. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, “Bose Einstein condensation in a surface microtrap,” Phys. Rev. Lett. 87, 230401 (2001). [CrossRef]
  6. M. Horikoshi and K. Nakagawa, “Atom chip based fast production of a Bose Einstein condensate,” Appl. Phys. B 82, 363–366 (2006). [CrossRef]
  7. D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires, and D. Z. Anderson, “A compact, transportable, microchip based system for high repetition rate production of Bose Einstein condensates,” Appl. Phys. Lett. 96, 093102 (2010). [CrossRef]
  8. S. Aubin, S. Myrskog, M. H. T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, “Rapid sympathetic cooling to fermi degeneracy on a chip,” Nat. Phys. 2, 384–387 (2006). [CrossRef]
  9. B. Lu and W. A. van Wijngaarden, “Bose Einstein condensation in a QUIC trap,” Can. J. Phys. 82, 81–102 (2004). [CrossRef]
  10. Y. Lin, I. Teper, C. Chin, and V. Vuletic, “Impact of the Casimir Polder potential and Johnson noise on Bose Einstein condensate stability near surfaces,” Phys. Rev. Lett. 92, 050404 (2004). [CrossRef]
  11. M. Gierling, P. Schneeweiss, G. Visanescu, P. Federsel, M. Haffner, D. P. Kern, T. E. Judd, A. Gunther, and J. Fortagh, “Cold atom scanning probe microscopy,” Nat. Nanotechnol. 6, 446–451 (2011). [CrossRef]
  12. Y. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005). [CrossRef]
  13. S. Kraft, A. Günther, P. Wicke, B. Kasch, C. Zimmermann, and J. Fortagh, “Atom-optical elements on microchips,” Eur. Phys. J. D 35, 119–123 (2005). [CrossRef]
  14. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom field coupling for Bose Einstein condensates in an optical cavity on a chip,” Nature 450, 272–276 (2007). [CrossRef]
  15. G. Birkl and J. Fortagh, “Microtraps for quantum information processing and precision force sensing,” Lasers Photon. Rev. 1, 12–23 (2007). [CrossRef]
  16. T. Calcarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, “Quantum gates with neutral atoms: controlling collisional interactions in time dependent traps,” Phys. Rev. A 61, 22304 (2000). [CrossRef]
  17. P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and T. Calcarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip,” Phys. Rev. A 74, 22312 (2006). [CrossRef]
  18. J. Reichel, “Microchip traps and Bose Einstein condensation,” Appl. Phys. B 74, 469–487 (2002). [CrossRef]
  19. W. A. van Wijngaarden, “A second century of Einstein? Bose Einstein condensation and quantum information,” Can. J. Phys. 83, 671685 (2005).
  20. B. E. Schultz, H. Ming, G. A. Noble, and W. A. van Wijngaarden, “Measurement of the Rb D2 transition linewidth at ultralow temperature,” Eur. Phys. J. D 48, 171–176 (2008). [CrossRef]
  21. D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, “Optical molasses and multilevel atoms: experiment,” J. Opt. Soc. Am. B 6, 2072–2083 (1989). [CrossRef]
  22. M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001). [CrossRef]
  23. D. A. Smith, S. Aigner, S. Hofferberth, M. Gring, M. Andersson, S. Wildermuth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer, “Absorption imaging of ultracold atoms on atom chips,” Opt. Express 19, 8471–8485 (2011). [CrossRef]
  24. C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and S. Whitlock, “Detection of small atom numbers through image processing,” Phys. Rev. A 82, 061606 (2010). [CrossRef]
  25. H. Ming and W. A. van Wijngaarden, “Transfer of ultracold Rb87 from a QUIC magnetic trap into a far off resonance optical trap,” Can. J. Phys. 85, 247–258 (2007). [CrossRef]
  26. I. Teper, Y. J. Lin, and V. Vuletic, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006). [CrossRef]
  27. J. M. Obrecht, R. J. Wild, M. Antezza, L. P. Pitaevskii, S. Stringari, and E. A. Cornell, “Measurement of the temperature dependence of the Casimir Polder force,” Phys. Rev. Lett. 98, 063201 (2007). [CrossRef]
  28. H. Bender, P. W. Courteille, C. Marzok, C. Zimmermann, and S. Slama, “Direct measurement of intermediate range Casimir Polder potentials,” Phys. Rev. Lett. 104, 083201 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited