OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 288–301

Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile

Jean-Loup Smirr, Matthieu Deconinck, Robert Frey, Imad Agha, Eleni Diamanti, and Isabelle Zaquine  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 288-301 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (907 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical investigation of the performance of single-mode coupled spontaneous parametric downconversion sources is proposed, which only requires very few assumptions of practical interest: quasi-degenerate collinear generation and narrow bandwidth obtained through spectral filtering. Other assumptions, such as pump-beam spatial and temporal envelopes, target single-mode profile and size, and nonlinear susceptibility distribution, are only taken into account in the final step of the computation, thus making the theory general and flexible. Figures of merit for performance include absolute coupled brightness and conditional coupling efficiency. Their optimization is investigated using functions that only depend on dimensionless parameters, so that the results provide the best experimental configuration for a whole range of design choices (e.g., crystal length, pump power, etc.). A particular application of the theory is validated by an experimental optimization obtained under compatible assumptions. A comparison with other works and proposals for numerically implementing the theory under less stringent assumptions is also provided.

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5290) Quantum optics : Photon statistics
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: September 4, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: November 17, 2012
Published: January 9, 2013

Jean-Loup Smirr, Matthieu Deconinck, Robert Frey, Imad Agha, Eleni Diamanti, and Isabelle Zaquine, "Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile," J. Opt. Soc. Am. B 30, 288-301 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Tittel and G. Weihs, “Photonic entanglement for fundamental tests and quantum communication,” Quantum Inf. Comput. 1, 3–56 (2001).
  2. S. Gröblacher, T. Paterek, R. Kaltenbaek, C. Brukner, M. Ždotukowski, M. Aspelmeyer, and A. Zeilinger, “An experimental test of non-local realism,” Nature 446, 871–875 (2007). [CrossRef]
  3. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007). [CrossRef]
  4. N. Gisin and R. T. Thew, “Quantum communication technology,” Electron. Lett. 46, 965–U20 (2010). [CrossRef]
  5. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  6. J. H. Shapiro, “Architectures for long-distance quantum teleportation,” New J. Phys. 4, 47 (2002). [CrossRef]
  7. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multi-mode memories,” Phys. Rev. Lett. 98, 190503 (2007). [CrossRef]
  8. F. Wong, J. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys. 16, 1517–1524 (2006). [CrossRef]
  9. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  10. T. G. Noh, H. Kim, T. Zyung, and J. Kim, “Efficient source of high purity polarization-entangled photon pairs in the 1550 nm telecommunication band,” Appl. Phys. Lett. 90, 011116 (2007). [CrossRef]
  11. J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13, 8951–8959 (2005). [CrossRef]
  12. B. Shi and A. Tomita, “Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate,” J. Opt. Soc. Am. B 21, 2081–2084 (2004). [CrossRef]
  13. H. Guillet de Chatellus, A. Sergienko, B. Saleh, M. Teich, and G. Di Giuseppe, “Non-collinear and non-degenerate polarization-entangled photon generation via concurrent type-I parametric downconversion in ppln,” Opt. Express 14, 10060–10072 (2006). [CrossRef]
  14. M. Fiorentino, C. Kuklewicz, and F. Wong, “Source of polarization entanglement in a single periodically poled KTiOPO4 crystal with overlapping emission cones,” Opt. Express 13, 127–135 (2005). [CrossRef]
  15. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15, 15377–15386 (2007). [CrossRef]
  16. O. Kuzucu and F. N. C. Wong, “Pulsed sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77, 032314 (2008). [CrossRef]
  17. S. Virally, S. Lacroix, and N. Godbout, “Limits of heralded single-photon sources based on parametric photon-pair generation,” Phys. Rev. A 81, 013808 (2010). [CrossRef]
  18. J. L. Smirr, R. Frey, E. Diamanti, R. Alléaume, and I. Zaquine, “Intrinsic limitations to the quality of pulsed spontaneous parametric downconversion sources for quantum information applications,” J. Opt. Soc. Am. B 28, 832–841 (2011). [CrossRef]
  19. A. Lvovsky, B. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009). [CrossRef]
  20. C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010). [CrossRef]
  21. T. Chanelière, J. Ruggiero, M. Bonarota, M. Afzelius, and J.-L. L. Gouët, “Efficient light storage in a crystal using an atomic frequency comb,” New J. Phys. 12, 023025 (2010). [CrossRef]
  22. E. Saglamyurek, N. Sinclair, J. Jin, J. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, and W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512 (2011). [CrossRef]
  23. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508 (2011). [CrossRef]
  24. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes,” Phys. Rev. 124, 1646–1654 (1961). [CrossRef]
  25. C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A 31, 2409–2418 (1985). [CrossRef]
  26. R. Ghosh and L. Mandel, “Observation of nonclassical effects in the interference of two photons,” Phys. Rev. Lett. 59, 1903–1905 (1987). [CrossRef]
  27. L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999). [CrossRef]
  28. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133 (1994). [CrossRef]
  29. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56, 1534–1541 (1997). [CrossRef]
  30. T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, 2804–2815 (1996). [CrossRef]
  31. A. Joobeur, B. E. A. Saleh, and M. C. Teich, “Spatio-temporal coherence properties of entangled light beams generated by parametric down-conversion,” Phys. Rev. A 50, 3349–3361 (1994). [CrossRef]
  32. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001). [CrossRef]
  33. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. D. Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003). [CrossRef]
  34. S. Castelletto, I. P. Degiovanni, A. Migdall, and M. Ware, “On the measurement of two-photon single-mode coupling efficiency in parametric down-conversion photon sources,” New J. Phys. 6, 87 (2004). [CrossRef]
  35. S. Castelletto, I. Degiovanni, G. Furno, V. Schettini, A. Migdall, and M. Ware, “Two-photon mode preparation and matching efficiency: definition, measurement, and optimization,” IEEE Trans. Instr. Meas. 54, 890–893 (2005). [CrossRef]
  36. D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72, 062301 (2005). [CrossRef]
  37. A. Ling, A. Lamas-Linares, and C. Kurtsiefer, “Absolute emission rates of spontaneous parametric down-conversion into single transverse gaussian modes,” Phys. Rev. A 77, 043834 (2008). [CrossRef]
  38. M. W. Mitchell, “Parametric down-conversion from a wave-equation approach: geometry and absolute brightness,” Phys. Rev. A 79, 043835 (2009). [CrossRef]
  39. R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A 81, 053805 (2010). [CrossRef]
  40. R. Boyd, Nonlinear Optics (Academic, 2008).
  41. A. Yariv, Quantum Electronics (Wiley, 1989).
  42. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801 (2004). [CrossRef]
  43. M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, “Three-color Sagnac source of polarization-entangled photon pairs,” Opt. Express 17, 23153–23159 (2009). [CrossRef]
  44. J. Garrison and R. Chiao, Quantum Optics (Oxford University, 2008).
  45. J. Shapiro, “The quantum theory of optical communications,” IEEE J. Sel. Top. Quantum Electron. 15, 1547–1569(2009). [CrossRef]
  46. The natural phase matching bandwidth has no influence on the results that follow if it is much larger than the pump linewidth.
  47. J. L. Smirr, S. Guilbaud, J. Ghalbouni, R. Frey, E. Diamanti, R. Alléaume, and I. Zaquine, “Simple performance evaluation of pulsed spontaneous parametric down-conversion sources for quantum communications,” Opt. Express 19, 616–627 (2011). [CrossRef]
  48. J. Berntsen, T. O. Espelid, and A. Genz, “An adaptive algorithm for the approximate calculation of multiple integrals,” ACM Trans. Math. Softw. 17, 437–451 (1991). [CrossRef]
  49. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  50. Y. Jeronimo-Moreno, S. Rodriguez-Benavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric downconversion,” Laser Phys. 20, 1221–1233 (2010). [CrossRef]
  51. J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson, “High-power fibre-laser-pumped Er:YAG laser with ‘top-hat’ output beam,” in Proceedings of 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), Munich, Germany, 2011.
  52. J. Romero, D. Giovannini, M. G. McLaren, E. J. Galvez, A. Forbes, and M. J. Padgett, “Orbital angular momentum correlations with a phase-flipped Gaussian mode pump beam,” J. Opt. 14, 085401 (2012). [CrossRef]
  53. L. Mandel, “Configuration-space photon number operators in quantum optics,” Phys. Rev. 144, 1071–1077 (1966). [CrossRef]
  54. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited