OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 306–313

Effective index approximation for ordered silicon nanowire arrays

Susan Patchett, Mohammadreza Khorasaninejad, Nixon O, and Simarjeet S. Saini  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 306-313 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1007 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A semi-analytical model for the optical properties of silicon nanowires (SiNWs) is presented. Results from the model offer a good physical understanding of the optical behavior of SiNWs. It is shown that light trapping within ordered nanowires only happens over a small wavelength band (20–75 nm) that is dependent on the diameter of the nanowires, not length. Furthermore, wavelength tunable absorption peaks can be achieved in ordered SiNWs by adjusting the geometrical parameters. A good match between the model and experimental results confirms the validity of the proposed effective index model.

© 2013 Optical Society of America

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: August 6, 2012
Revised Manuscript: December 1, 2012
Manuscript Accepted: December 2, 2012
Published: January 9, 2013

Susan Patchett, Mohammadreza Khorasaninejad, Nixon O, and Simarjeet S. Saini, "Effective index approximation for ordered silicon nanowire arrays," J. Opt. Soc. Am. B 30, 306-313 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010). [CrossRef]
  2. L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells,” Appl. Phys. Lett. 91, 233117 (2007). [CrossRef]
  3. A. F. Roudsari, S. S. Saini, N. O, and M. P. Anantram, “High-gain multiple-gate photodetector with nanowires in the channel,” IEEE Electron Device Lett. 32, 357–359 (2011). [CrossRef]
  4. P. Servati, A. Colli, S. Hofmann, Y. Q. Fu, P. Beecher, Z. A. K. Durrani, A. C. Ferrari, A. J. Flewitt, J. Robertson, and W. I. Milne, “Scalable silicon nanowire photodetectors,” J. Phys. E 38, 64–66 (2007). [CrossRef]
  5. T. Xu, J. Huang, L. He, Y. He, S. Su, and S. Lee, “Ordered silicon nanocones arrays for label-free DNA quantitative analysis by surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 99, 153116 (2011). [CrossRef]
  6. M. Khorasaninejad, J. Walia, N. Dhindsa, and S. S. Saini, “Highly enhanced Raman scattering from vertical silicon nanowire arrays,” Appl. Phys. Lett. 101, 173114 (2012). [CrossRef]
  7. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007). [CrossRef]
  8. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35, 3378–3380 (2010). [CrossRef]
  9. Q. G. Du, C. H. Kam, H. V. Demir, H. Y. Yu, and X. W. Sun, “Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications,” Opt. Lett. 36, 1884–1886 (2011). [CrossRef]
  10. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–18381 (2009). [CrossRef]
  11. J. Li, H. Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell applications,” Appl. Phys. Lett. 95, 243113 (2009). [CrossRef]
  12. S. Peng and G. M. Morris, “Resonant scattering from two dimensional-gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996). [CrossRef]
  13. M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234(2012). [CrossRef]
  14. M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, and S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012). [CrossRef]
  15. D. E. Aspnes, “Optical properties of thin film,” Thin Solid Films 89, 249–262 (1982). [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  17. Federal Standard 1037C, Telecom Glossary, “Cutback technique”, http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm (1996).
  18. M. Khorasaninejad, N. Abedzadeh, A. S. Jawanda, N. O, M. P. Anantram, and S. S. Saini, “Bunching characteristics of silicon nanowire arrays” J. Appl. Phys. 111, 044328 (2012). [CrossRef]
  19. G. Grzela, D. Hourlier, and J. G. Rivas, “Polarization-dependent light extinction in ensembles of polydisperse vertical semiconductor nanowires: a Mie scattering effective medium,” Phys. Rev. B 86, 045305 (2012). [CrossRef]
  20. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37, 3756–3758 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited