OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 439–444

Study of tunable negative index metamaterials based on phase-change materials

Tun Cao, Robert E. Simpson, and Martin J. Cryan  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 439-444 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The tunable optical response of elliptical nanohole arrays penetrating through metal–phase change material–metal (AuGe2Sb1Te4Au) films is numerically investigated using the finite difference time domain method in the mid-infrared spectral region. The influence of amorphous and crystalline structural states of Ge2Sb1Te4 on the effective optical parameters of the structure is analyzed. Switching between these states provides a large wavelength shift of the structure’s effective optical parameters.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: September 25, 2012
Revised Manuscript: November 17, 2012
Manuscript Accepted: December 18, 2012
Published: January 23, 2013

Tun Cao, Robert E. Simpson, and Martin J. Cryan, "Study of tunable negative index metamaterials based on phase-change materials," J. Opt. Soc. Am. B 30, 439-444 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  2. C. W. Qiu and L. Gao, “Resonant light scattering by small coated nonmagnetic spheres: magnetic resonances, negative refraction and prediction,” J. Opt. Soc. Am. B 25, 1728–1737 (2008). [CrossRef]
  3. V. M. Shalaev, “Optical negative-index metamaterials”, Nat. Photonics 1, 41–48 (2007). [CrossRef]
  4. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011). [CrossRef]
  5. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95, 137404 (2005). [CrossRef]
  6. G. Dolling, M. Wegener, A. Schaedle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89, 231118 (2006). [CrossRef]
  7. U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm,” Opt. Lett. 32, 1671–1673 (2007). [CrossRef]
  8. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007). [CrossRef]
  9. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef]
  10. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Tilted response of fishnet metamaterials at near-infrared optical wavelengths,” Phys. Rev. B 81, 115109 (2010). [CrossRef]
  11. J. C. Swihart, “Field solution for a thin‐film superconducting strip transmission line,” J. Appl. Phys. 32, 461–469 (1961). [CrossRef]
  12. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434–438 (2006). [CrossRef]
  13. T. Cao and M. J. Cryan, “Study of incident angle dependence for dual-band double negative-index material using elliptical nanohole arrays,” J. Opt. Soc. Am. A 29, 209–215 (2012). [CrossRef]
  14. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007). [CrossRef]
  15. X. Wang, D. H. Kwon, D. H. Werner, I. C. Khoo, A. V. Kildishev, and V. M. Shalaev, “Tunable optical negative-index metamaterials employing anisotropic liquid crystals,” Appl. Phys. Lett. 91, 143122 (2007). [CrossRef]
  16. A. Minovich, D. N. Neshev, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Tunable fishnet metamaterials infiltrated by liquid crystals,” Appl. Phys. Lett. 96, 193103 (2010). [CrossRef]
  17. Z. L. Samson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett. 96, 143105 (2010). [CrossRef]
  18. A. V. Kolobov, Photo-Induced Metastability in Amorphous Semiconductors (John Wiley & Sons, 2006).
  19. S. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21, 1450–1453 (1968). [CrossRef]
  20. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominga, “Interfacial phase-change memory,” Nature Nanotechnol. 6, 501–505 (2011). [CrossRef]
  21. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336, 1566–1569 (2012). [CrossRef]
  22. R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5,” Nano Lett. 10, 414–419 (2010). [CrossRef]
  23. G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B 28, 223–262 (2010). [CrossRef]
  24. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nature 7, 653–658 (2008). [CrossRef]
  25. http://www.emexplorer.net/ .
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  27. J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996). [CrossRef]
  28. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics(Cambridge University, 1997) pp. 61–70.
  29. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  30. S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express 13, 4922–4930 (2005). [CrossRef]
  31. R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag. 51, 1516–1529 (2003). [CrossRef]
  32. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970). [CrossRef]
  33. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  34. X. D. Chen, T. M. Grzegorczyk, B. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited