## One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage |

JOSA B, Vol. 30, Issue 2, pp. 468-474 (2013)

http://dx.doi.org/10.1364/JOSAB.30.000468

Enhanced HTML Acrobat PDF (589 KB)

### Abstract

We propose a scheme to deterministically generate Greenberger–Horne–Zeilinger states of

© 2013 Optical Society of America

**OCIS Codes**

(270.5570) Quantum optics : Quantum detectors

(270.5565) Quantum optics : Quantum communications

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: October 22, 2012

Revised Manuscript: December 12, 2012

Manuscript Accepted: December 31, 2012

Published: January 30, 2013

**Citation**

Si-Yang Hao, Yan Xia, Jie Song, and Nguyen Ba An, "One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage," J. Opt. Soc. Am. B **30**, 468-474 (2013)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-2-468

Sort: Year | Journal | Reset

### References

- J. S. Bell, “On the Einstein–Podolsky–Rosen paradox,” Physics 1, 195–200 (1964).
- D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142(1990). [CrossRef]
- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
- C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
- Y. Xia, J. Song, P. M. Lu, and H. S. Song, “Teleportation of an N-photon Greenberger–Horne–Zeilinger (GHZ) polarization-entangled state using linear optical elements,” J. Opt. Soc. Am. B 27, A1–A6 (2010). [CrossRef]
- K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996). [CrossRef]
- J. W. Pan and A. Zeilinger, “Greenberger–Horne–Zeilinger state analyzer,” Phys. Rev. A 57, 002208 (1998). [CrossRef]
- M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
- W. Dur, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
- S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822–829 (1998). [CrossRef]
- R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. 83, 648–651 (1999). [CrossRef]
- V. Scarani and N. Gisin, “Quantum communication between N partners and Bell’s inequalities,” Phys. Rev. Lett. 87, 117901 (2001). [CrossRef]
- G. A. Durkin, C. Simon, and D. Bouwmeester, “Multiphoton entanglement concentration and quantum cryptograph,” Phys. Rev. Lett. 88, 187902 (2002). [CrossRef]
- C. P. Yang, S.-I Chu, and S. Han, “Efficient many-party controlled teleportation of multiqubit quantum information via entanglement,” Phys. Rev. A 70, 022329 (2004). [CrossRef]
- D. P. DiVincenzo and P. W. Shor, “Fault-tolerant error correction with efficient quantum codes,” Phys. Rev. Lett. 77, 3260–3263 (1996). [CrossRef]
- J. Preskill, “Reliable quantum computers,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454, 385–410 (1998). [CrossRef]
- J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54, R4649–R4652 (1996). [CrossRef]
- S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, “Improvement of frequency standards with quantum entanglement,” Phys. Rev. Lett. 79, 3865–3868(1997). [CrossRef]
- D. Leibfried, E. Knill, S. Seidelin, and J. Britton, “Greation of a six-atom ‘Schrodinger cat’ state,” Nature 438, 639–642 (2005). [CrossRef]
- Z. Zhao, Y. Chen, A. N. Zheng, Y. Yang, H. Briegel, and J. W. Pan, “Experimental demonstration of five-photon entanglement and open-destination teleportation,” Nature 430, 54–58 (2004). [CrossRef]
- Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008). [CrossRef]
- R. J. Nelson, D. G. Cory, and S. Lloyd, “Experimental demonstration of Greenberger–Horne–Zeilinger correlations using nuclear magnetic resonance,” Phys. Rev. A 61, 022106 (2000). [CrossRef]
- M. Neeley, R. C. Bialczak, M. Lenander, and E. Lucero, “Generation of three-qubit entangled states using superconducting phase qubits,” Nature 467, 570–573 (2010). [CrossRef]
- P. B. Li and F. L. Li, “Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system,” Opt. Express 19, 1207–1216 (2011). [CrossRef]
- X. Y. Lv, P. J. Song, J. B. Liu, and X. Yang, “N-qubit W state of separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009). [CrossRef]
- A. Zheng and J. Liu, “Generation of an N-qubit Greenberger–Horne–Zeilinger state with distant atoms in bimodal cavities,” J. Phys. B 44, 165501 (2011). [CrossRef]
- S. B Zheng, “Generation of Greenberger–Horne–Zeilinger states for multiple atoms trapped in separated cavities,” Eur. Phys. J. D 54, 719–722 (2009). [CrossRef]
- X. Y. Lv, L. G. Si, X. Y. Hao, and X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009). [CrossRef]
- A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
- Z. B. Yang, S. Y. Ye, A. Serafini, and S. B. Zheng, “Distributed coherent manipulation of qutrits by virtual excitation processes,” J. Phys. B 43, 085506 (2010). [CrossRef]
- Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
- J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997). [CrossRef]
- S. J. van Enk, J. I. Cirac, and P. Zoller, “Ideal quantum communication over noisy channels: a quantum optical implementation,” Phys. Rev. Lett. 78, 4293–4296 (1997). [CrossRef]
- S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5167 (1999). [CrossRef]
- S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, “Long distance, unconditional teleportation of atomic states via complete Bell state measurements,” Phys. Rev. Lett. 87, 167903 (2001). [CrossRef]
- A. S. Parkins and H. J. Kimble, “Position-momentum Einstein–Podolsky–Rosen state of distantly Separated trapped atoms,” Phys. Rev. A 61, 052104 (2000). [CrossRef]
- S. B. Zheng, “A simplified scheme for realizing Greenberger–Horne–Zeilinger states,” J. Opt.B Quantum Semiclass. Opt. 1, 534–535 (1999). [CrossRef]
- W. A. Li and L. F. Wei, “Controllable entanglement preparations between atoms in spatially-separated cavities via quantum Zeno dynamics,” Opt. Express 20, 13440–13450 (2012). [CrossRef]
- P. Kral, L. Thanopulos, and M. Shapiro, “Coherently controlled adiabatic passage,” Rev. Mod. Phys. 79, 53–77 (2007). [CrossRef]
- N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535–4546 (1999). [CrossRef]
- U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, “Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results,” J. Chem. Phys. 92, 5363–5376 (1990). [CrossRef]
- K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003–1025 (1998). [CrossRef]
- P. Marte, P. Zoller, and J. L. Hall, “Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems,” Phys. Rev. A 44, R4118–R4121 (1991). [CrossRef]
- T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242–5245 (1997). [CrossRef]
- S. M. Spillane, T. J. Kippenberg, K. J. Vahala, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamic,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
- J. R. Buck and H. J. Kimble, “Optimale sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003). [CrossRef]
- S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003). [CrossRef]
- K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004). [CrossRef]
- S. B. Zheng, C. P. Yang, and F. Nori, “Arbitrary control of coherent dynamics for distant qubits in a quantum network,” Phys. Rev. A 82, 042327 (2010). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.