OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 518–529

Statistical properties of coherent photon-added two-mode squeezed vacuum and its inseparability

Li-Yun Hu and Zhi-Ming Zhang  »View Author Affiliations


JOSA B, Vol. 30, Issue 3, pp. 518-529 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000518


View Full Text Article

Enhanced HTML    Acrobat PDF (1367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the statistical properties and inseparability of the field states generated by any order nonlocal coherent photon addition (CPA) to the two-mode squeezed vacuum (TMSV). It is shown that the normalization factor of the CPA-TMSV is a Legendre polynomial, a compact expression. The statistical properties are discussed according to the analytical expressions of cross-correlation function, antibunching effect, and the negativity of its Wigner function. The inseparability is presented by using Shchukin–Vogel criteria and the Einstein–Podolsky–Rosen correlation. It is found that the symmetrical CPA-TMSV may possess stronger correlation than the single-mode photon-addition case. The lower bound of entanglement of the CPA-TMSV is considered, which indicates the logarithmic negativity is invalid for verifying the entanglement when the squeezing parameter is less than a threshold value, a period function of π/2. In addition, quantum teleportation is examined, which shows that asymmetric photon-added TMSV may be more useful for teleportation than the symmetric case.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

History
Original Manuscript: November 1, 2012
Revised Manuscript: December 18, 2012
Manuscript Accepted: January 7, 2013
Published: February 8, 2013

Citation
Li-Yun Hu and Zhi-Ming Zhang, "Statistical properties of coherent photon-added two-mode squeezed vacuum and its inseparability," J. Opt. Soc. Am. B 30, 518-529 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-518


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, 2000).
  2. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002). [CrossRef]
  3. G. Giedke, and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002). [CrossRef]
  4. J. Fiurasek, “Gaussian transformations and distillation of entangled Gaussian states,” Phys. Rev. Lett. 89, 137904 (2002). [CrossRef]
  5. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004). [CrossRef]
  6. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006). [CrossRef]
  7. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007). [CrossRef]
  8. M. S. Kim, “Recent developments in photon-level operations on travelling light fields,” J. Phys. B 41, 133001 (2008). [CrossRef]
  9. G. S. Agarwal, and K. Tara, “Nonclassical properties of states generated by the excitations on a coherent state,” Phys. Rev. A 43, 492–497 (1991). [CrossRef]
  10. L. Y. Hu, and Z. M. Zhang, “Nonclassicality and decoherence of photon-added squeezed thermal state in thermal environment,” J. Opt. Soc. Am. B 29, 529–537 (2012). [CrossRef]
  11. A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73, 042310 (2006). [CrossRef]
  12. A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007). [CrossRef]
  13. D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003). [CrossRef]
  14. H. Nha, and H. J. Carmichael, “Proposed test of quantum nonlocality for continuous variables,” Phys. Rev. Lett. 93, 020401 (2004). [CrossRef]
  15. R. García-Patrón, J. Fiurášek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Proposal for a loophole-free Bell test using homodyne detection,” Phys. Rev. Lett. 93, 130409 (2004). [CrossRef]
  16. S. D. Bartlett, and B. C. Sanders, “Universal continuous-variable quantum computation: requirement of optical nonlinearity for photon counting,” Phys. Rev. A 65, 042304 (2002). [CrossRef]
  17. S. Zhang, and P. van Loock, “Local Gaussian operations can enhance continuous-variable entanglement distillation,” Phys. Rev. A 84, 062309 (2011). [CrossRef]
  18. J. Fiurasek, “Improving entanglement concentration of Gaussian states by local displacements,” Phys. Rev. A 84, 012335 (2011). [CrossRef]
  19. Y. Yang, and F. L. Li, “Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement,” Phys. Rev. A 80, 022315 (2009). [CrossRef]
  20. J. Fiurasek, “Distillation and purification of symmetric entangled Gaussian states,” Phys. Rev. A 82, 042331 (2010). [CrossRef]
  21. S. Y. Lee, and H. Nha, “Quantum state engineering by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 82, 053812 (2010). [CrossRef]
  22. S. Y. Lee, S. W. Ji, H. J. Kim, and H. Nha, “Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition,” Phys. Rev. A 84, 012302 (2011). [CrossRef]
  23. H. J. Kim, S. Y. Lee, S. W. Ji, and H. Nha, “Quantum linear amplifier enhanced by photon subtraction and addition,” Phys. Rev. A 85, 013839 (2012). [CrossRef]
  24. J. Jeffers, “Optical amplifier-powered quantum optical amplification,” Phys. Rev. A 83, 053818 (2011). [CrossRef]
  25. A. Ourjoumtsev, A. Dantan, R. Tualle-Brouri, and Ph. Grangier, “Increasing entanglement between Gaussian states by coherent photon subtraction,” Phys. Rev. Lett. 98, 030502 (2007). [CrossRef]
  26. J. Fiurasek, “Conditional generation of N-photon entangled states of light,” Phys. Rev. A 65, 053818 (2002). [CrossRef]
  27. P. Kok, H. Lee, and J. P. Dowling, “Creation of large-photon-number path entanglement conditioned on photodetection,” Phys. Rev. A 65, 052104 (2002). [CrossRef]
  28. S. Y. Lee and H. Nha, “Second-order superposition operations via Hong–Ou–Mandel interference,” Phys. Rev. A 85, 043816 (2012). [CrossRef]
  29. G. S. Agarwal, R. R. Puri, and R. P. Singh, “Vortex states for the quantized radiation field,” Phys. Rev. A 56, 4207–4215 (1997). [CrossRef]
  30. A. Zavatta, J. Fiurasek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” Nat. Photonics 5, 52–60 (2010). [CrossRef]
  31. A. Zavatta, V. Parigi, M. S. Kim, H. Jeong, and M. Bellini, “Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields,” Phys. Rev. Lett. 103, 140406 (2009). [CrossRef]
  32. L.-Y. Hu and Z.-M. Zhang, “Entanglement and nonclassicality of photon-added two-mode squeezed thermal state,” J. Opt. Soc. Am. B 29, 1456–1464 (2012). [CrossRef]
  33. C. T. Lee, “Many-photon anti-bunching in generalized pair coherent states,” Phys. Rev. A 41, 1569–1575 (1990). [CrossRef]
  34. L. Y. Hu, X. X. Xu, and H. Y. Fan, “Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment,” J. Opt. Soc. Am. B 27, 286–299 (2010). [CrossRef]
  35. H. Y. Fan and H. R. Zaidi, “Application of IWOP technique to the generalized Weyl correspondence,” Phys. Lett. A 124, 303–307 (1987). [CrossRef]
  36. E. Shchukin and W. Vogel, “Inseparability criteria for continuous bipartite quantum states,” Phys. Rev. Lett. 95, 230502 (2005). [CrossRef]
  37. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000). [CrossRef]
  38. R. Simon, “Peres–Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000). [CrossRef]
  39. M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of Gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006). [CrossRef]
  40. H. R. Li, F. L. Li, and S. Y. Zhu, “Inseparability of photon-added Gaussian states,” Phys. Rev. A 75, 062318 (2007). [CrossRef]
  41. A. Serafini, F. Illuminati, M. G. A. Paris, and S. De Siena, “Entanglement and purity of two-mode Gaussian states in noisy channels,” Phys. Rev. A 69, 022318 (2004). [CrossRef]
  42. G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002). [CrossRef]
  43. G. Adesso, A. Serafini, and F. Illuminati, “Extremal entanglement and mixedness in continuous variable systems,” Phys. Rev. A 70, 022318 (2004). [CrossRef]
  44. P. Marian and T. A. Marian, “Continuous-variable teleportation in the characteristic-function description,” Phys. Rev. A 74, 042306 (2006). [CrossRef]
  45. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998). [CrossRef]
  46. L.-Y. Hu and H.-Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008). [CrossRef]
  47. L. Z. Jiang, X. Y. Chen, T. Y. Ye, and F. Y. Hong, “Entanglement criterion for coherent subtraction and coherent addition bipartite continuous variable states,” arXiv:1211.5826.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited