OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 576–581

Heralded generation of symmetric and asymmetric entangled qudits with weak cross-Kerr nonlinearity

Qing Lin  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 576-581 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-dimensional entangled states have attracted attention because of their strong nonlocality and powerful capability for quantum information processing. By the methods presented in this paper, arbitrary forms-entangled qudits including symmetric and asymmetric forms could be generated with weak cross-Kerr nonlinearity. These schemes are heralded by the use of single-photon detectors. If all the detectors do not register any single photons, the generation is a success with the probability 1/nM determined by dimension n and partite M. Furthermore, these schemes work well even with the common photon number nonresolving detectors; therefore they are feasible with the current experimental technology.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: November 21, 2012
Manuscript Accepted: January 4, 2013
Published: February 14, 2013

Qing Lin, "Heralded generation of symmetric and asymmetric entangled qudits with weak cross-Kerr nonlinearity," J. Opt. Soc. Am. B 30, 576-581 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  3. T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Haensel, M. Hennrich, and R. Blatt, “14 qubit entanglement: creation and coherence,” Phys. Rev. Lett. 106, 130506 (2011). [CrossRef]
  4. X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan, “Observation of eight-photon entanglement,” Nat. Photonics 6, 225–228 (2012). [CrossRef]
  5. Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and G.-C. Guo, “Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state,” Nat. Commun. 2, 546–551 (2011). [CrossRef]
  6. A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled airs,” Phys. Rev. Lett. 78, 3031–3034 (1997). [CrossRef]
  7. D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of three-photon Greenberger–Horne–Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345–1349(1999). [CrossRef]
  8. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004). [CrossRef]
  9. M. Bourennane, M. Eibl, C. Kurtsiefer, S. Gaertner, H. Weinfurter, O. Gühne, P. Hyllus, D. Bruß, M. Lewenstein, and A. Sanpera, “Experimental detection of multipartite entanglement using witness operators,” Phys. Rev. Lett. 92, 087902 (2004). [CrossRef]
  10. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434, 169–176 (2005). [CrossRef]
  11. R. W. Spekkens and T. Rudolph, “Degrees of concealment and bindingness in quantum bit commitment protocols,” Phys. Rev. A 65, 012310 (2001). [CrossRef]
  12. D. Bruß and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002). [CrossRef]
  13. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett. 88, 127902 (2002). [CrossRef]
  14. T. Durt, N. J. Cerf, N. Gisin, and M. Żukowski, “Security of quantum key distribution with entangled qutrits,” Phys. Rev. A 67, 012311 (2003). [CrossRef]
  15. G. M. Terriza, A. Vaziri, J. Řeháček, Z. Hradil, and A. Zeilinger, “Triggered qutrits for quantum communication protocols,” Phys. Rev. Lett. 92, 167903 (2004). [CrossRef]
  16. N. K. Langford, R. B. Dalton, M. D. Harvey, J. L. O’Brien, G. J. Pryde, A. Gilchrist, S. D. Bartlett, and A. G. White, “Measuring entangled qutrits and their use for quantum bit commitment,” Phys. Rev. Lett. 93, 053601 (2004). [CrossRef]
  17. S. Gröblacher, Y. Jennewein, A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental quantum cryptography with qutrits,” New J. Phys. 8, 75 (2006). [CrossRef]
  18. T. C. Ralph, K. J. Resch, and A. Gilchrist, “Efficient Toffoli gates using qudits,” Phys. Rev. A 75, 022313 (2007). [CrossRef]
  19. B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, “Simplifying quantum logic using higher-dimensional Hilbert spaces,” Nat. Phys. 5, 134–140 (2009). [CrossRef]
  20. D. Gross and J. Eisert, “Novel schemes for measurement-based quantum computation,” Phys. Rev. Lett. 98, 220503 (2007). [CrossRef]
  21. J. M. Cai, W. Dür, M. Van den Nest, A. Miyake, and H. J. Briegel, “Quantum computation in correlation space and extremal entanglement,” Phys. Rev. Lett. 103, 050503 (2009). [CrossRef]
  22. J. M. Cai, A. Miyake, W. Dür, and H. J. Briegel, “Universal quantum computer from a quantum magnet,” Phys. Rev. A 82, 052309 (2010). [CrossRef]
  23. R. Kaltenbaek, J. Lavoie, B. Zeng, S. D. Bartlett, and K. J. Resch, “Optical one-way quantum computing with a simulated valence-bond solid,” Nat. Phys. 6, 850–854 (2010). [CrossRef]
  24. W. B. Gao, X. C. Yao, J. M. Cai, H. Lu, P. Xu, T. Yang, C. Y. Lu, Y. A. Chen, Z. B. Chen, and J. W. Pan, “Experimental measurement-based quantum computing beyond the cluster-state model,” Nat. Photonics 5, 117–123 (2011). [CrossRef]
  25. J. C. Howell, A. Lamas-Linares, and D. Bouwmeester, “Experimental violation of a spin-1 bell inequality using maximally entangled four-photon states,” Phys. Rev. Lett. 88, 030401 (2002). [CrossRef]
  26. Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, A. A. Zhukov, C. H. Oh, and M. K. Tey, “Qutrit state engineering with biphotons,” Phys. Rev. Lett. 93, 230503 (2004). [CrossRef]
  27. Y. I. Bogdanov, M. V. Chekhova, L. A. Krivitsky, S. P. Kulik, A. N. Penin, A. A. Zhukov, L. C. Kwek, C. H. Oh, and M. K. Tey, “Statistical reconstruction of qutrits,” Phys. Rev. A 70, 042303 (2004). [CrossRef]
  28. Y. I. Bogdanov, M. V. Chekhova, S. P. Kulik, G. A. Maslennikov, C. H. Oh, and M. K. Tey, “Preparation of arbitrary qutrit state based on biphotons,” Proc. SPIE 5833, 202–212 (2005). [CrossRef]
  29. E. V. Moreva, G. A. Maslennikov, S. S. Straupe, and S. P. Kulik, “Realization of four-level qudits using biphotons,” Phys. Rev. Lett. 97, 023602 (2006). [CrossRef]
  30. H. Mikami and T. Kobayashi, “Remote preparation of qutrit states with biphotons,” Phys. Rev. A 75, 022325 (2007). [CrossRef]
  31. G. Vallone, E. Pomarico, F. De Martini, and P. Mataloni, “Experimental realization of polarization qutrits from nonmaximally entangled states,” Phys. Rev. A 76, 012319 (2007). [CrossRef]
  32. Y. M. Li, K. S. Zhang, and K. C. Peng, “Generation of qudits and entangled qudits,” Phys. Rev. A 77, 015802 (2008). [CrossRef]
  33. B. P. Lanyon, T. J. Weinhold, N. K. Langford, J. L. O’Brien, K. J. Resch, A. Gilchrist, and A. G. White, “Manipulating biphotonic qutrits,” Phys. Rev. Lett. 100, 060504 (2008). [CrossRef]
  34. J. Joo, T. Rudolph, and B. C. Sanders, “A heralded two-qutrit entangled state,” J. Phys. B 42, 114007 (2009). [CrossRef]
  35. A. Halevy, E. Megidish, T. Shacham, L. Dovrat, and H. S. Eisenberg, “Projection of two biphoton qutrits onto a maximally entangled state,” Phys. Rev. Lett. 106, 130502 (2011). [CrossRef]
  36. X. L. Ye and Q. Lin, “Efficient and flexible generation of entangled qudits with cross-phase modulation,” J. Opt. Soc. Am. B 29, 1810–1814 (2012). [CrossRef]
  37. Q. Lin, “Efficient generation of arbitrary multi-partite polarized entangled qudits,” Sci. Sin. Phys. Mech. Astron. 42, 842–851 (2012). [CrossRef]
  38. S. D. Barrett, P. Kok, K. Nemoto, R. G. Beausoleil, W. J. Munro, and T. P. Spiller, “Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities,” Phys. Rev. A 71, 060302(R) (2005).
  39. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502(2004). [CrossRef]
  40. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005). [CrossRef]
  41. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]
  42. Q. Lin and B. He, “Bi-directional mapping between polarization and spatially encoded photonic qutrits,” Phys. Rev. A 80, 062312 (2009). [CrossRef]
  43. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994). [CrossRef]
  44. L. M. Duan and R. Raussendorf, “Efficient quantum computation with probabilistic quantum gates,” Phys. Rev. Lett. 95, 080503 (2005). [CrossRef]
  45. B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited