OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 649–655

Coherent field-controlled single-photon transmission in the atom-cavity-waveguide coupled system

Xiang-yang Yu, Jian-hong Li, and Xiao-bin Li  »View Author Affiliations


JOSA B, Vol. 30, Issue 3, pp. 649-655 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000649


View Full Text Article

Enhanced HTML    Acrobat PDF (808 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Starting from the semiclassical theory of light–matter interaction, we have theoretically investigated the substantial influences of two coherent driving fields on manipulating the single-photon transmission probability in the extensively studied atom-cavity-waveguide coupled system. The results strictly demonstrate that under the relatively large photon-cavity detuning and moderately strong driving fields, the single-photon transmission probability increases remarkably from the original 0 to 1 by controlling the coherent fields in the nondissipative environment, which manifests the manipulation of the coherent fields as a sort of highly controllable external tool to efficiently act as an experimentally available all-optical quantum switching. In contrast, the behavior independent from variation of coherent fields and characterized by the stationary transmission spectrum appears under the photon-atom on-resonance condition. Similar properties can also be observed in the dissipative environment. These distinct characteristics essentially reveal some significant functionalities of coherent field control in influencing the single-photon transmission spectrum, which may have potential applications in designing efficient photonic devices.

© 2013 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: November 12, 2012
Revised Manuscript: December 27, 2012
Manuscript Accepted: January 11, 2013
Published: February 18, 2013

Citation
Xiang-yang Yu, Jian-hong Li, and Xiao-bin Li, "Coherent field-controlled single-photon transmission in the atom-cavity-waveguide coupled system," J. Opt. Soc. Am. B 30, 649-655 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-3-649


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008). [CrossRef]
  2. L. M. Duan and C. Monroe, “Quantum networks with trapped ions,” Rev. Mod. Phys. 82, 1209–1224 (2010). [CrossRef]
  3. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
  4. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011). [CrossRef]
  5. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]
  6. K. Zhang and Z. Y. Li, “Transfer behavior of quantum states between atoms in photonic crystal coupled cavities,” Phys. Rev. A 81, 033843 (2010). [CrossRef]
  7. M. Mucke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Boas, and G. Rempe, “Electromagnetically induced transparency with single atoms in a cavity,” Nature 465, 755–758 (2010). [CrossRef]
  8. C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. Abdumalikov, M. Baur, and A. Walllraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements,” Phys. Rev. Lett. 106, 243601 (2011). [CrossRef]
  9. M. G. Genoni, A. Serafini, M. S. Kim, and D. Burgarth, “Dynamic recurrence and the quantum control of coupled oscillators,” Phys. Rev. Lett. 108, 150501 (2012). [CrossRef]
  10. J. T. Shen and S. H. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009). [CrossRef]
  11. J. T. Shen and S. H. Fan, “Strongly correlated multiparticle transport in one dimension through a quantum impurity,” Phys. Rev. A 76, 062709 (2007). [CrossRef]
  12. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable scattering of a single photon inside a one-dimensional resonator waveguide,” Phys. Rev. Lett. 101, 100501 (2008). [CrossRef]
  13. J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010). [CrossRef]
  14. J. T. Shen and S. H. Fan, “Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system,” Phys. Rev. Lett. 98, 153003 (2007). [CrossRef]
  15. P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006). [CrossRef]
  16. D. Englund, A. Faraon, L. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007). [CrossRef]
  17. P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009). [CrossRef]
  18. E. E. Hach, A. W. Elshaari, and S. F. Preble, “Fully quantum-mechanical dynamic analysis of single-photon transport in a single-mode waveguide coupled to a traveling-wave resonator,” Phys. Rev. A 82, 063839 (2010). [CrossRef]
  19. D. Gerace, H. E. Tureci, A. Imamoglu, V. Giovannetti, and R. Fazio, “The quantum-optical Josephson interferometer,” Nat. Phys. 5, 281–284 (2009). [CrossRef]
  20. W. B. Yan, Q. B. Fan, and L. Zhou, “Control of correlated two-photon transport in a one-dimensional waveguide,” Phys. Rev. A 85, 015803 (2012). [CrossRef]
  21. X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008). [CrossRef]
  22. E. Kyoseva, A. Beige, and L. C. Kwek, “Coherent cavity networks with complete connectivity,” New J. Phys. 14, 023023 (2012). [CrossRef]
  23. W. M. Zhang, M. H. Wu, C. U. Lei, and H. N. Xiong, “Non-Markovian dynamics of a microcavity coupled to a waveguide in photonic crystals,” Opt. Express 18, 18407–18418 (2010). [CrossRef]
  24. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photon,” Nat. Photonics 6, 605–609 (2012). [CrossRef]
  25. M. Hafezi, D. E. Chang, V. Gritsev, E. Demler, and M. D. Lukin, “Quantum transport of strongly interaction photons in a one-dimensional nonlinear waveguide,” Phys. Rev. A 85, 013822 (2012). [CrossRef]
  26. H. X. Zheng, D. J. Gauthier, and H. U. Baranger, “Strongly correlated photons generated by coupling a three- or four-level system to waveguide,” Phys. Rev. A 85, 043832(2012). [CrossRef]
  27. D. Roy, “Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparence,” Phys. Rev. Lett. 106, 053601 (2011). [CrossRef]
  28. D. Witthaut and A. S. Sorensen, “Photon scattering by a three-level emitter in a one-dimensional waveguide,” New. J. Phys. 12, 043052 (2010). [CrossRef]
  29. H. X. Zheng, D. J. Gauthier, and H. U. Baranger, “Cavity-free photon blockade induced by many-body bound states,” Phys. Rev. Lett. 107, 223601 (2011). [CrossRef]
  30. P. Longo, P. Schmitteckert, and K. Busch, “Dynamics of photon transport through quantum impurities in dispersion-engineered one-dimensional systems,” J. Opt. A 11, 114009 (2009). [CrossRef]
  31. Y. Q. Luo, Y. Y. Song, L. M. Gu, J. H. Lang, and X. S. Ma, “Voltage-controlled scattering of single photons in a one-dimensional waveguide,” Chin. Phys. Lett. 28, 074209 (2011). [CrossRef]
  32. E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998). [CrossRef]
  33. V. S. Malinovsky and I. R. Sola, “Phase-controlled collapse and revival of entanglement of two interacting qubits,” Phys. Rev. Lett. 96, 050502 (2006). [CrossRef]
  34. X. Y. Yu and L. H. Li, “Coherent and ultrafast manipulation of entanglement sudden death and recurrence,” Opt. Lett. 35, 2744–2746 (2010). [CrossRef]
  35. X. Y. Yu and L. H. Li, “Phase manipulation of entanglement and quantum discord,” Europhys. Lett. 92, 40002(2010). [CrossRef]
  36. X. Y. Yu, Q. Luo, W. L. Li, Q. Li, Z. R. Qiu, and J. Y. Zhou, “Ultrafast phase dynamics of coherent carriers in GaAs,” Appl. Phys. Lett. 73, 3321–3323 (1998). [CrossRef]
  37. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited