OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 3 — Mar. 1, 2013
  • pp: 656–662

Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures

Boyang Zhang, Joshua Hendrickson, and Junpeng Guo  »View Author Affiliations

JOSA B, Vol. 30, Issue 3, pp. 656-662 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1003 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-perfect IR light absorption at multiple wavelengths has been experimentally demonstrated by using multiplexed metal square plasmonic resonance structures. Optical power absorption over 95% has been observed in dual-band metamaterial absorbers at two separate wavelengths, and optical power absorption over 92.5% has been observed in triple-band metamaterial absorbers at three separate wavelengths. The peak absorption wavelengths are primarily determined by the sizes of the metal squares in the multiplexed structures. Electrical field distributions in the middle of the dielectric spacer layer were calculated at the peak absorption wavelengths. It is found that the strong light absorption corresponds to local quadrupole plasmon resonance modes in the metamaterial structures.

© 2013 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: October 31, 2012
Revised Manuscript: January 3, 2013
Manuscript Accepted: January 28, 2013
Published: February 19, 2013

Boyang Zhang, Joshua Hendrickson, and Junpeng Guo, "Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures," J. Opt. Soc. Am. B 30, 656-662 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902). [CrossRef]
  2. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  3. O. Hunderi and H. P. Myers, “The optical absorption in partially disordered silver films,” J. Phys. F 3, 683–690 (1973). [CrossRef]
  4. M. C. Hutley and D. Maystre, “The total absorption of light by a diffraction grating,” Opt. Commun. 19, 431–436 (1976). [CrossRef]
  5. E. Popov, L. Tsonev, and D. Maystre, “Losses of plasmon surface wave on metallic grating,” J. Mod. Opt. 37, 379–387 (1990). [CrossRef]
  6. E. Popov, L. Tsonev, and D. Maystre, “Lamellar metallic grating anomalies,” Appl. Opt. 33, 5214–5219 (1994). [CrossRef]
  7. E. Popov, D. Maystre, R. C. McPhedran, M. Neviere, M. C. Huthley, and G. H. Derrick, “Total absorption of unpolarized light by crossed gratings,” Opt. Express 16, 6146–6155 (2008). [CrossRef]
  8. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008). [CrossRef]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]
  10. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, P. A. Hobson, and C. R. Lawrence, “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009). [CrossRef]
  11. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008). [CrossRef]
  12. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008). [CrossRef]
  13. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on negative index plasmonic metamaterial,” Phys. Rev. B 79, 033101 (2009). [CrossRef]
  14. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17, 11039–11044 (2009). [CrossRef]
  15. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17, 16745–16749 (2009). [CrossRef]
  16. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef]
  17. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010). [CrossRef]
  18. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010). [CrossRef]
  19. D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” J. Opt. Soc. Am. B 29, 1503–1510 (2012). [CrossRef]
  20. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I.-C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal–dielectric–metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011). [CrossRef]
  21. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641–4647 (2011). [CrossRef]
  22. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y.-C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376–10381 (2012). [CrossRef]
  23. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37, 308–310 (2012). [CrossRef]
  24. H. M. Lee and J. C. Wu, “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012). [CrossRef]
  25. Y. Cui, K. H. Fung, J. Xu, S. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20, 17552–17559 (2012). [CrossRef]
  26. H. Cheng, S. Chen, H. Yang, J. Li, X. An, C. Gu, and J. Tian, “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012). [CrossRef]
  27. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009). [CrossRef]
  28. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498–504 (2010). [CrossRef]
  29. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010). [CrossRef]
  30. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945–947 (2011). [CrossRef]
  31. X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381–397 (2011). [CrossRef]
  32. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Progress Electromagn. Res. 113, 103–110 (2011). [CrossRef]
  33. X. Shen, T. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011). [CrossRef]
  34. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011). [CrossRef]
  35. B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, “Dual band switchable metamaterial electromagnetic absorber,” Progress Electromagn. Res. B 24, 121–129 (2010). [CrossRef]
  36. Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multi-band metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012). [CrossRef]
  37. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154–156 (2012). [CrossRef]
  38. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at mid-wave infrared using multiplexed metal structures,” Opt. Lett. 37, 371–373 (2012). [CrossRef]
  39. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  40. M. J. Dodge, “Refractive properties of magnesium fluoride,” Appl. Opt. 23, 1980–1985 (1984). [CrossRef]
  41. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010). [CrossRef]
  42. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012). [CrossRef]
  43. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited