Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dynamical quantum theory of heat transfer between plasmonic nanosystems

Not Accessible

Your library or personal account may give you access

Abstract

We develop a dynamical theory of heat transfer between two nanosystems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics toward the steady state and establish connection with the standard theory of heat transfer in the steady state. For strongly coupled nanoparticles, we predict Rabi oscillations in the mean occupation number of surface plasmons in each nanoparticle.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Heat transfer between micro- and nano-mechanical systems through optical channels

F. Farman and A. R. Bahrampour
J. Opt. Soc. Am. B 31(7) 1525-1532 (2014)

On anomalously large nano-scale heat transfer between metals

Carsten Henkel and Paul Philip Schmidt
J. Opt. Soc. Am. B 36(4) C10-C14 (2019)

Entanglement dynamics of three atoms under quantum-jump-based feedback control

Li Chen, Hong-Fu Wang, and Shou Zhang
J. Opt. Soc. Am. B 30(3) 475-481 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (55)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.