OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 806–811

Polarimetric measurement of optically perturbed surface plasmonic field

Shankar Pidishety and Nirmal K. Viswanathan  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 806-811 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A surface plasmon (SP) field excited at the metal–air interface by a TM-polarized laser and perturbed by an unpolarized, weakly absorbing laser beam leads to an understanding of the SP decay field’s contribution to specular reflection at the near field. The locally perturbed near field results in a spatial variation of the magnitude of the SP decay field due to the photo-thermal effect on the excited SP wave. The SP decay field of different magnitude interferes with the specular reflected field, affecting its polarization and phase characteristics. The changes in the resulting far field are polarimetrically analyzed to extract the polarization ellipse parameters and the phase changes in the entire plasmonic field region. The obtained results are promising for potential applications in all-optical polarization modulators and switches for optical computing.

© 2013 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.6810) Lasers and laser optics : Thermal effects
(240.0240) Optics at surfaces : Optics at surfaces
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: December 20, 2012
Revised Manuscript: January 29, 2013
Manuscript Accepted: February 5, 2013
Published: March 6, 2013

Shankar Pidishety and Nirmal K. Viswanathan, "Polarimetric measurement of optically perturbed surface plasmonic field," J. Opt. Soc. Am. B 30, 806-811 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A 8, S87–S93(2006). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  4. J. Zhang and L. Zhang, “Nanostructures for surface plasmons,” Adv. Opt. Photon. 4, 157–321 (2012). [CrossRef]
  5. W. P. Chen, G. Ritchie, and E. Burstein, “Excitation of surface electromagnetic waves in attenuated total-reflection prism configurations,” Phys. Rev. Lett. 37, 993–997 (1976). [CrossRef]
  6. S. Herminghaus, M. Klopfleisch, and H. J. Schmidt, “Attenuated total reflectance as a quantum interference phenomenon,” Opt. Lett. 19, 293–295 (1994). [CrossRef]
  7. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005). [CrossRef]
  8. S. Negm and H. Talaat, “Radiative and non-radiative decay of surface plasmons in thin metal films,” Solid State Commun. 84, 133–137 (1992). [CrossRef]
  9. H. Dohi, S. Tago, M. Fukui, and O. Tada, “Spatial dependence of reflected light intensity in ATR geometry: long-range surface plasmon polariton case,” Solid State Commun. 55, 1023–1026 (1985). [CrossRef]
  10. H. J. Simon, R. V. Andaloro, and R. T. Deck, “Observation of interference in reflection profile resulting from excitation of optical normal modes with focused beams,” Opt. Lett. 32, 1590–1592 (2007). [CrossRef]
  11. R. V. Andaloro, R. T. Deck, and H. J. Simon, “Optical interference pattern resulting from excitation of surface mode with diverging beam,” J. Opt. Soc. Am. B 22, 1512–1516 (2005). [CrossRef]
  12. M. van Exter and A. Lagendijk, “Ultrashort surface-plasmon and phonon dynamics,” Phys. Rev. Lett. 60, 49–52 (1988). [CrossRef]
  13. S. Herminghaus and P. Leiderer, “Surface plasmon enhanced transient thermoreflectance,” Appl. Phys. A 51, 350–353 (1990). [CrossRef]
  14. T. Okamoto, T. Kamiyama, and I. Yamaguchi, “All-optical spatial light modulator with surface plasmon resonance,” Opt. Lett. 18, 1570–1572 (1993). [CrossRef]
  15. P. Shankar and N. K. Viswanathan, “All-optical thermo-plasmonic device,” Appl. Opt. 50, 5966–5969 (2011). [CrossRef]
  16. T. Velinov, M. G. Somekh, and S. Liu, “Direct far-field observation of surface-plasmon propagation by photoinduced scattering,” Appl. Phys. Lett. 75, 3908–3910 (1999). [CrossRef]
  17. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4, 709–716 (2010). [CrossRef]
  18. M. Rashidi-Huyeh and B. Palpant, “Counterintuitive thermo-optical response of metal-dielectric nanocomposite materials as a result of local electromagnetic field enhancement,” Phys. Rev. B 74, 075405 (2006). [CrossRef]
  19. H.-P. Chiang, Y.-C. Wang, P. Leung, and W. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188, 283–289 (2001). [CrossRef]
  20. A. K. Nikitin, “Polarimetric detection of the photon excitation of surface plasmons,” Quantum Electron. 30, 73–77(2000). [CrossRef]
  21. L. J. Berezhinsky, L. S. Maksimenko, I. E. Matyash, S. P. Rudenko, and B. K. Serdega, “Polarization modulation spectroscopy of surface plasmon resonance,” Opt. Spectrosc. 105, 257–264 (2008). [CrossRef]
  22. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  23. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 1st ed. (North Holland, 1988).
  24. M. Pohl, V. I. Belotelov, I. A. Akimov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, A. K. Zvezdin, D. R. Yakovlev, and M. Bayer, “Plasmonic crystals for ultrafast nanophotonics: optical switching of surface plasmon polaritons,” Phys. Rev. B 85, 081401 (2012). [CrossRef]
  25. A. Kolomenski, A. Kolomenskii, J. Noel, S. Peng, and H. Schuessler, “Propagation length of surface plasmons in a metal film with roughness,” Appl. Opt. 48, 5683–5691(2009). [CrossRef]
  26. F. I. Baida, D. V. Labeke, and J. M. Vigoureux, “Theoretical study of near-field surface plasmon excitation, propagation and diffraction,” Opt. Commun. 171, 317–331 (1999). [CrossRef]
  27. P. Shankar, V. Kumar, and N. K. Viswanathan, “Plasmon-mediated vectorial topological dipole: formation and annihilation,” Opt. Lett. 37, 4233–4235 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited