OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 838–842

Design and fabrication of amorphous germanium thin film-based single-material distributed Bragg reflectors operating near 2.2 μm for long wavelength applications

Jung Woo Leem and Jae Su Yu  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 838-842 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (795 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the design and fabrication of single-material distributed Bragg reflectors (DBRs) composed of amorphous germanium (a-Ge) thin films by a glancing angle deposition and their optical reflectance characteristics in the long wavelength region of 1.7–3.1 μm, together with the aid of theoretical analysis using a rigorous coupled-wave analysis method. The refractive index of the a-Ge films is estimated from the measured transmittance spectra. The high and low refractive indices a-Ge films (i.e., Δn2.18), which compose the alternative layers of DBRs, were fabricated at two incident vapor flux angles (θα) of 0° and 80°, respectively, by determining the quarter wavelength thicknesses of 135 nm at θα=0° and 291 nm at θα=80° for a center wavelength (λc) of 2.2μm. For the fabricated a-Ge/a-Ge DBR with only 5 pairs, the normalized stop bandwidth (Δλ/λc) of 22.3% was measured while maintaining high reflectance values of >99% over a wide wavelength range of 2.06–2.55 μm, which indicates a reasonable consistency with the calculated reflectance results.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(230.1480) Optical devices : Bragg reflectors
(310.1860) Thin films : Deposition and fabrication
(310.4165) Thin films : Multilayer design

ToC Category:
Optical Devices

Original Manuscript: December 11, 2012
Revised Manuscript: February 9, 2013
Manuscript Accepted: February 11, 2013
Published: March 12, 2013

Jung Woo Leem and Jae Su Yu, "Design and fabrication of amorphous germanium thin film-based single-material distributed Bragg reflectors operating near 2.2 μm for long wavelength applications," J. Opt. Soc. Am. B 30, 838-842 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Zhao, Y. H. Zuo, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, “A highly efficient light-trapping structure for thin-film silicon solar cells,” Sol. Energy 84, 110–115 (2010). [CrossRef]
  2. P. Abolghasem and A. S. Helmy, “Single-sided Bragg reflection waveguides with multilayer core for monolithic semiconductor parametric devices,” J. Opt. Soc. Am. B 29, 1367–1375(2012). [CrossRef]
  3. Y. C. Peng, C. C. Kao, H. W. Huang, J. T. Chu, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Fabrication and characteristics of GaN-based microcavity light-emitting diodes with high reflectivity AlN/GaN distributed Bragg reflectors,” Jpn. J. Appl. Phys. 45, 3446–3448 (2006). [CrossRef]
  4. U. Demirbas, G. S. Petrich, D. Li, A. Sennaroglu, L. A. Kolodziejski, F. X. Kärtner, and J. G. Fujimoto, “Femtosecond tuning of Cr:colquiriite lasers with AlGaAs-based saturable Bragg reflectors,” J. Opt. Soc. Am. B 28, 986–993 (2011). [CrossRef]
  5. O. Blum, I. J. Fritz, L. R. Dawson, A. J. Howard, T. J. Headley, J. F. Klem, and T. J. Drummond, “Highly reflective, long wavelength AlAsSb/GaAsSb distributed Bragg reflector grown by molecular beam epitaxy on InP substrates,” Appl. Phys. Lett. 66, 329–331 (1995). [CrossRef]
  6. K. J. Kasunic, “Design equations for the reflectivity of deep-etch distributed Bragg reflector gratings,” J. Lightwave Technol. 18, 425–429 (2000). [CrossRef]
  7. D. Hofstetter, H. P. Zappe, J. E. Epler, and J. Söchtig, “Single-growth-step GaAs/AIGaAs distributed Bragg reflector lasers with holographically-defined recessed gratings,” Electron. Lett. 30, 1858–1859 (1994). [CrossRef]
  8. K. Avary, S. Rennon, F. Klopf, J. P. Reithmaier, and A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors,” Microelectron. Eng. 57–58, 593–598 (2001). [CrossRef]
  9. L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, and F. Genty, “GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE,” J. Cryst. Growth 311, 1912–1916 (2009). [CrossRef]
  10. W. Heiss, T. Schwarzl, J. Roither, G. Springholz, M. Aigle, H. Pascher, K. Biermann, and K. Reimann, “Epitaxial Bragg mirrors for the mid-infrared and their applications,” Prog. Quantum Electron. 25, 193–228 (2001). [CrossRef]
  11. J. Bengtsson, J. Gustavsson, Å. Haglund, and A. Larsson, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Express 16, 20789–20802 (2008). [CrossRef]
  12. M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87, 141103 (2005). [CrossRef]
  13. J. S. Jang, Y. M. Song, C. I. Yeo, C. Y. Park, and Y. T. Lee, “Highly tolerant a-Si distributed Bragg reflector fabricated by oblique angle deposition,” Opt. Mater. Express 1, 451–457 (2011). [CrossRef]
  14. J. W. Leem and J. S. Yu, “Broadband and wide-angle distributed Bragg reflectors based on amorphous germanium films by glancing angle deposition,” Opt. Express 20, 20577–20581(2012). [CrossRef]
  15. M. F. Schubert, J. Q. Xi, J. K. Kim, and E. F. Schubert, “Distributed Bragg reflector consisting of high- and low-refractive-index thin film layers made of the same material,” Appl. Phys. Lett. 90, 141115 (2007). [CrossRef]
  16. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25, 1317–1335 (2007). [CrossRef]
  17. J. W. Leem and J. S. Yu, “Glancing angle deposited ITO films for efficiency enhancement of a-Si:H/μc-Si:H tandem thin film solar cells,” Opt. Express 19, A258–A268 (2011). [CrossRef]
  18. D. K. Pandya and K. L. Chopra, “Obliquely deposited amorphous Ge films. I. Optical properties,” Phys. Status Solidi A 35, 725–734 (1976). [CrossRef]
  19. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  20. SOPRA, http://www.sopra-sa.com , accessed 1 November, 2012.
  21. J. K. Kim, T. Gessmann, E. F. Schubert, J. Q. Xi, H. Luo, J. Cho, C. Sone, and Y. Park, “GaInN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer,” Appl. Phys. Lett. 88, 013501(2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited