OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 843–850

Nonlinear vector and scalar polariton waves in dielectric medium

Igor V. Dzedolik and Olga Karakchieva  »View Author Affiliations


JOSA B, Vol. 30, Issue 4, pp. 843-850 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000843


View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the properties of vector and scalar phonon–polariton cnoidal waves and spatial solitons propagating in a boundless dielectric medium. We obtain analytically the expressions for the envelopes of linearly and circularly polarized nonlinear polariton waves in self-focusing and self-defocusing media. The expressions of spatial solitons and cnoidal waves describe one and several flat flows of polaritons for the linearly polarized wave, respectively. The equation for a right or left circularly polarized polariton scalar wave has a soliton solution and a cnoidal wave solution. The polariton vector wave with right and left polariton spiralities has an analytical solution too. Also we examine the linearly and circularly polarized polariton wave instability in the nonlinear dielectric medium.

© 2013 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 27, 2012
Revised Manuscript: February 3, 2013
Manuscript Accepted: February 10, 2013
Published: March 12, 2013

Citation
Igor V. Dzedolik and Olga Karakchieva, "Nonlinear vector and scalar polariton waves in dielectric medium," J. Opt. Soc. Am. B 30, 843-850 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-4-843


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Kittel, Quantum Theory of Solids (Wiley, 1963).
  2. O. Madelung, Festkörpertheorie, I, II (Springer-Verlag, 1972).
  3. I. V. Dzedolik, “One-dimensional controllable photonic crystal,” J. Opt. Soc. Am. B 24, 2741–2745 (2007). [CrossRef]
  4. I. V. Dzedolik and J. P. Mikulska, “Polariton spectrum control in dielectric medium,” in Proceedings 2nd IEEE International Workshop on Thz Radiation (TERA) (IEEE, 2010), pp. 288–290.
  5. D. N. Klyshko, Quantum and Nonlinear Optics (Nauka, 1980) (in Russian).
  6. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  7. I. V. Dzedolik, Polaritons in Optical Fibers and Dielectric Resonators (DIP, 2007) (in Russian).
  8. I. V. Dzedolik, “Period variation of polariton waves in optical fiber,” J. Opt. Pure Appl. Opt. 11, 094012 (2009). [CrossRef]
  9. I. V. Dzedolik and S. N. Lapayeva, “Mass of polariton in different dielectric media,” J. Opt. 13, 015204 (2011). [CrossRef]
  10. I. V. Dzedolik and O. S. Karakchieva, “Polaritons in nonlinear medium: generation, propagation and interaction,” in Proceedings of International Workshop on Nonlinear Photonics (NLP) (IEEE, 2011), pp. 1–3.
  11. N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1965).
  12. A. P. Sukhorukov, Nonlinear Wave Interactions in Optics and Radiophysics (Nauka, 1988) (in Russian).
  13. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  14. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  15. J. Xu, V. Shandarov, M. Wesner, and D. Kip, “Observation of two-dimensional spatial solitons in iron-doped barium-calcium titanate crystals,” Phys. Status Solidi. A, Appl. Res. 189, R4–R5 (2002). [CrossRef]
  16. I. V. Dzedolik, “Transformation of sinusoidal electromagnetic and polarization waves into cnoidal waves in an optical fibre,” Ukr. J. Phys. Opt. 9, 226–235 (2008). [CrossRef]
  17. S. Ouyang and Q. Guo, “Dark and gray spatial optical solitons in Kerr-type nonlocal media,” Opt. Express 17, 5170–5175 (2009). [CrossRef]
  18. S. Zhong, C. Huang, C. Li, and L. Dong, “Surface defect kink solitons,” Opt. Commun. 285, 3674–3678 (2012). [CrossRef]
  19. D. Buccoliero and A. S. Desyatnikov, “Quasi-periodic transformations of nonlocal spatial solitons,” Opt. Express 17, 9608–9613 (2009). [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  21. G. A. Korn and T. M. Korn, Mathematical Handbook (McGraw-Hill, 1968).
  22. S. Santran, L. Cathoni, T. Cardinal, E. Farginc, G. Le Flem, C. Rouyera, and L. Sarger, “Precise and absolute measurements of the complex third-order optical susceptibility,” Proc. SPIE 4106, 349 (2000).
  23. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Special 30th anniversary feature: sensitive measurement of optical nonlinearities using a single beam,” IEEE LEOS Newsletter 21, 17–26 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited