OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1335–1341

Mode analysis for metal-coated nanocavity by three-dimensional S-matrix method

Qi-Feng Yao, Yong-Zhen Huang, Yue-De Yang, Ling-Xiu Zou, Xiao-Meng Lv, Heng Long, Jin-Long Xiao, and Chu-Cai Guo  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1335-1341 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001335


View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional scattering matrix method is proposed to investigate mode characteristics for metal-coated nanocavities, with the vertical waveguide structure of an active region confined by upper and lower cladding layers. For a nanocavity with radius of 800 nm, Q factors of well-confined modes with wavelength around 1550 nm first decrease with the increase of the metallic layer thickness due to the metallic absorption and the increase of radiation loss as the metallic layer thickness is less than 10 nm, and then rise with the increase of the metallic layer. However, for a weak confined nanocavity with a radius of 500 nm, the mode Q factor increases with the metallic layer thickness first, reaches a maximum value at an optimal metallic thickness, then decrease with the further increase of the metallic layer. For nanocavities confined by a thick metallic layer, the Q factors approach constants limited by the metallic absorption. However, mode field patterns, including the vertical field distributions, are affected by the metallic layer, which not only influences the metallic layer absorption but also the optical confinement factor in the active region.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3945) Lasers and laser optics : Microcavities
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 10, 2013
Revised Manuscript: March 31, 2013
Manuscript Accepted: April 1, 2013
Published: April 24, 2013

Citation
Qi-Feng Yao, Yong-Zhen Huang, Yue-De Yang, Ling-Xiu Zou, Xiao-Meng Lv, Heng Long, Jin-Long Xiao, and Chu-Cai Guo, "Mode analysis for metal-coated nanocavity by three-dimensional S-matrix method," J. Opt. Soc. Am. B 30, 1335-1341 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1335


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  2. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  3. K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301(R) (2012). [CrossRef]
  4. S. L. Chuang and D. Bimberg, “Metal-cavity nanolasers,” IEEE Photon. J. 3, 288–292 (2011). [CrossRef]
  5. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010). [CrossRef]
  6. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. C. Zhu, M. H. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef]
  7. S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010). [CrossRef]
  8. J. Huang, S. H. Kim, and A. Scherer, “Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum,” Opt. Express 18, 19581–19591 (2010). [CrossRef]
  9. C. Y. Lu and S. L. Chuang, “A surface emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express 19, 13225–13244 (2011). [CrossRef]
  10. Q. F. Yao, Y. Z. Huang, L. X. Zou, X. M. Lv, J. D. Lin, and Y. D. Yang, “Analysis of mode coupling and threshold gain control for nanocircular resonators confined by isolation and metallic layers,” IEEE J. Lightwave Technol. 31, 786–792 (2013). [CrossRef]
  11. M. Hentschel and K. Richter, “Quantum chaos in optical systems: the annular billard,” Phys. Rev. E 66, 056207(2002). [CrossRef]
  12. H. E. Tureci, H. G. L. Schwefel, Ph. Jacquod, and A. D. Stone, “Modes of wave-chaotic dielectric resonators,” Prog. Opt. 47, 75–137 (2005). [CrossRef]
  13. A. I. Rahachou and I. V. Zozoulenko, “Scattering matrix approach to the resonant states and Q values of microdisk lasing cavities,” Appl. Opt. 43, 1761–1772 (2004). [CrossRef]
  14. X. S. Luo, Y. Z. Huang, W. H. Guo, Q. Chen, M. Q. Wang, and L. J. Yu, “Investigation of mode characteristics for microdisk resonators by S-matrix and three-dimensional finite-difference time-domain technique,” J. Opt. Soc. Am. B 23, 1068–1073 (2006). [CrossRef]
  15. D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982).
  16. B. J. Li and P. L. Liu, “Numerical analysis of the whispering gallery modes by the finite-difference time-domain method,” IEEE J. Quantum Electron 32, 1583–1587 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited