OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1335–1341

Mode analysis for metal-coated nanocavity by three-dimensional S-matrix method

Qi-Feng Yao, Yong-Zhen Huang, Yue-De Yang, Ling-Xiu Zou, Xiao-Meng Lv, Heng Long, Jin-Long Xiao, and Chu-Cai Guo  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1335-1341 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001335


View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional scattering matrix method is proposed to investigate mode characteristics for metal-coated nanocavities, with the vertical waveguide structure of an active region confined by upper and lower cladding layers. For a nanocavity with radius of 800 nm, Q factors of well-confined modes with wavelength around 1550 nm first decrease with the increase of the metallic layer thickness due to the metallic absorption and the increase of radiation loss as the metallic layer thickness is less than 10 nm, and then rise with the increase of the metallic layer. However, for a weak confined nanocavity with a radius of 500 nm, the mode Q factor increases with the metallic layer thickness first, reaches a maximum value at an optimal metallic thickness, then decrease with the further increase of the metallic layer. For nanocavities confined by a thick metallic layer, the Q factors approach constants limited by the metallic absorption. However, mode field patterns, including the vertical field distributions, are affected by the metallic layer, which not only influences the metallic layer absorption but also the optical confinement factor in the active region.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3945) Lasers and laser optics : Microcavities
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 10, 2013
Revised Manuscript: March 31, 2013
Manuscript Accepted: April 1, 2013
Published: April 24, 2013

Citation
Qi-Feng Yao, Yong-Zhen Huang, Yue-De Yang, Ling-Xiu Zou, Xiao-Meng Lv, Heng Long, Jin-Long Xiao, and Chu-Cai Guo, "Mode analysis for metal-coated nanocavity by three-dimensional S-matrix method," J. Opt. Soc. Am. B 30, 1335-1341 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1335

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited