OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1420–1425

Quasi-dark modes in a five-bar plasmonic oligomer

Tianran Liu, Yang Shen, Qiangzhong Zhu, Zhangkai Zhou, and Chongjun Jin  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1420-1425 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (866 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a plasmonic oligomer that supports two quasi-dark modes. A double plasmon-induced transparency spectrum arises from the Fano interference between a bright mode and two quasi-dark modes. A coupling Lorentzian oscillator model is employed to explain the resulting line shape. It is found that the modulation depths and frequency of two Fano resonances can be tuned effectively by displacement of each component of the oligomer. The oligomer can be used as a sensitive plasmon ruler based on both frequency shift and radiance sensing. Furthermore, an artificial magnetic quadrupole is also introduced by one of the quasi-dark modes. We expect that the oligomer will be valuable for the design of plasmonic circuits and multiwavelength surface-enhanced Raman scattering.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: January 30, 2013
Revised Manuscript: April 4, 2013
Manuscript Accepted: April 4, 2013
Published: May 6, 2013

Tianran Liu, Yang Shen, Qiangzhong Zhu, Zhangkai Zhou, and Chongjun Jin, "Quasi-dark modes in a five-bar plasmonic oligomer," J. Opt. Soc. Am. B 30, 1420-1425 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A 113, 4028–4034 (2009). [CrossRef]
  2. J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008). [CrossRef]
  3. M. Rahmani, B. Lukiyanchuk, B. Ng, A. Tavakkoli K. G., Y. F. Liew, and M. H. Hong, “Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers,” Opt. Express 19, 4949–4956 (2011). [CrossRef]
  4. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736–17746(2007). [CrossRef]
  5. T. Dadosh, J. Sperling, G. W. Bryant, R. Breslow, T. Shegai, M. Dyshel, G. Haran, and I. Bar-Joseph, “Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer,” ACS Nano 3, 1988–1994 (2009). [CrossRef]
  6. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 8, 3184–3189 (2010). [CrossRef]
  7. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry breaking in a plasmonic metamaterial at optical wavelength,” Nano Lett. 8, 2171–2175 (2008). [CrossRef]
  8. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett. 102, 107401 (2009). [CrossRef]
  9. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663(2011). [CrossRef]
  10. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  11. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. 101, 047401 (2008). [CrossRef]
  12. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef]
  13. A. E. Cetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express 19, 22607–22618 (2011). [CrossRef]
  14. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the angstrom scale with visible light” Nano Lett. 13, 497–503 (2013). [CrossRef]
  15. X.-R. Jin, J. Park, H. Zheng, S. Lee, Y.-P. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express 19, 21652–21657 (2011). [CrossRef]
  16. P. Ding, C. Fan, Y. Cheng, E. Liang, and Q. Xue, “Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials,” Appl. Opt. 51, 1879–1885 (2012). [CrossRef]
  17. Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express 18, 18229–18234 (2010). [CrossRef]
  18. J. C. Love, A. R. Urbach, M. G. Prentiss, and G. M. Whitesides, “Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions” J. Am. Chem. Soc. 125, 12696–12697 (2003). [CrossRef]
  19. Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, “Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior,” Chem. Phys. Lett. 432, 222–225 (2006). [CrossRef]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  21. Na Liu, Liwei Fu, Stefan Kaiser, Heinz Schweizer, and Harald Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater. 20, 3859–3865 (2008). [CrossRef]
  22. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007). [CrossRef]
  23. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2007). [CrossRef]
  24. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett. 97, 243902 (2006). [CrossRef]
  25. N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halasi, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012). [CrossRef]
  26. Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12, 4853–4858 (2012). [CrossRef]
  27. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011). [CrossRef]
  28. P. K. Jain, H. Wenyu, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007). [CrossRef]
  29. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimmers,” J. Phys. Chem. C 112, 4954–4960 (2008). [CrossRef]
  30. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005). [CrossRef]
  31. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, “Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles,” Nano Lett. 5, 2246–2252 (2005).
  32. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, and M. Käll, “Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109, 1079–1087 (2005). [CrossRef]
  33. K.-H. Su, Q.-H. Wei, and X. Zhang, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003). [CrossRef]
  34. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410 (2011). [CrossRef]
  35. M. W. Klein, T. Tritschler, and M. Wegener, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B 72, 115113 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited