OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1426–1431

Enhanced coupling efficiency between dielectric and hybrid plasmonic waveguides

Peng Shi, Guangya Zhou, and Fook Siong Chau  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1426-1431 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001426


View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The modal distributions and properties of dielectric and hybrid plasmonic (HP) waveguides are investigated systematically. Their coupling efficiency through a direct coupling scheme is estimated by numerical simulation and the results are compared with values predicted by the Fresnel formula. The influence of various factors on the coupling efficiency between dielectric and HP waveguides, including interface scattering, absorption caused by light coupling to the surface plasmon polariton mode, and the mismatch between the two waveguide modes, is analyzed theoretically. A tapered coupling structure with linearly varying height and width of the silicon layer is proposed, with which extremely high coupling efficiency (94.4%) and good broadband coupling performance (above 90%) are demonstrated.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optical Devices

History
Original Manuscript: February 12, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 4, 2013
Published: May 6, 2013

Citation
Peng Shi, Guangya Zhou, and Fook Siong Chau, "Enhanced coupling efficiency between dielectric and hybrid plasmonic waveguides," J. Opt. Soc. Am. B 30, 1426-1431 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1426


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThD112.
  2. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  3. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  4. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011). [CrossRef]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  6. P. Shi, K. Huang, and Y.-P. Li, “Enhance the resolution of photonic crystal negative refraction imaging by metal grating,” Opt. Lett. 37, 359–361 (2012). [CrossRef]
  7. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009). [CrossRef]
  8. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009). [CrossRef]
  9. D. Dai and S. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18, 17958–17966 (2010). [CrossRef]
  10. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18, 27802–27819 (2010). [CrossRef]
  11. M. Wu, Z. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express 18, 11728–11736 (2010). [CrossRef]
  12. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends,” Opt. Express 18, 12971–12979 (2010). [CrossRef]
  13. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010). [CrossRef]
  14. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide,” Opt. Express 19, 15843–15854 (2011). [CrossRef]
  15. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, and D. Dai, “Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides,” Opt. Express 19, 838–847 (2011). [CrossRef]
  16. B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express 19, 628–637 (2011). [CrossRef]
  17. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express 19, 12925–12936 (2011). [CrossRef]
  18. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19, 23671–23682 (2011). [CrossRef]
  19. R. Hao, E. Li, and X. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett. 37, 2934–2936 (2012). [CrossRef]
  20. J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20, 25345–25355 (2012). [CrossRef]
  21. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler,” Opt. Lett. 37, 3372–3374 (2012). [CrossRef]
  22. L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, and D. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 30, 163–168 (2012). [CrossRef]
  23. L. Chen, T. Zhang, X. Li, and W. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express 20, 20535–20544 (2012). [CrossRef]
  24. Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett. 35, 3153–3155 (2010). [CrossRef]
  25. S. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides,” Opt. Express 20, 5867–5881 (2012). [CrossRef]
  26. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010). [CrossRef]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited