OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1438–1445

Optimizing the second hyperpolarizability with minimally parametrized potentials

C. J. Burke, T. J. Atherton, J. Lesnefsky, and R. G. Petschek  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1438-1445 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001438


View Full Text Article

Enhanced HTML    Acrobat PDF (653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dimensionless zero-frequency intrinsic second hyperpolarizability γint=γ/4E105m2(e)4 was optimized for a single electron in a 1D well by adjusting the shape of the potential. Optimized potentials were found to have hyperpolarizabilities in the range 0.15γint0.60; potentials optimizing gamma were arbitrarily close to the lower bound and were within 0.5% of the upper bound. All optimal potentials possess parity symmetry. Analysis of the Hessian of γint around the maximum reveals that effectively only a single parameter, one of those chosen in the piecewise linear representation adopted, is important to obtaining an extremum. Prospects for designing chromophores based on the design principle here elucidated are discussed.

© 2013 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(160.4330) Materials : Nonlinear optical materials
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Materials

History
Original Manuscript: January 3, 2013
Revised Manuscript: March 11, 2013
Manuscript Accepted: March 12, 2013
Published: May 6, 2013

Citation
C. J. Burke, T. J. Atherton, J. Lesnefsky, and R. G. Petschek, "Optimizing the second hyperpolarizability with minimally parametrized potentials," J. Opt. Soc. Am. B 30, 1438-1445 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 2003).
  3. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000). [CrossRef]
  4. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25, 1183–1185 (2000). [CrossRef]
  5. M. Fujiwara, K. Yamauchi, M. Sugisaki, K. Yanagi, A. Gall, B. Robert, R. Cogdell, and H. Hashimoto, “Large third-order optical nonlinearity realized in symmetric nonpolar carotenoids,” Phys. Rev. B 78, 161101 (2008). [CrossRef]
  6. J. M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Bredas, J. W. Perry, and S. R. Marder, “Design of polymethine dyes with large third-order optical nonlinearities and loss figures of merit,” Science 327, 1485–1488 (2010). [CrossRef]
  7. T. Luu, E. Elliott, A. Slepkov, S. Eisler, R. McDonald, F. Hegmann, and R. Tykwinski, “Synthesis, structure, and nonlinear optical properties of diarylpolyynes,” Org. Lett. 7, 51–54 (2005). [CrossRef]
  8. J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007). [CrossRef]
  9. B. Champagne and B. Kirtman, “Comment on ‘physical limits on electronic nonlinear molecular susceptibilities’,” Phys. Rev. Lett. 95, 109401 (2005). [CrossRef]
  10. B. Champagne and B. Kirtman, “Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull pi-conjugated systems,” J. Chem. Phys. 125, 024101 (2006). [CrossRef]
  11. D. S. Watkins and M. G. Kuzyk, “Universal properties of the optimized off-resonant intrinsic second hyperpolarizability,” J. Opt. Soc. Am. B 29, 1661–1671 (2012). [CrossRef]
  12. K. Tripathy, J. P. Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, and A. Myers Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932(2004). [CrossRef]
  13. J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007). [CrossRef]
  14. S. Shafei, M. C. Kuzyk, and M. G. Kuzyk, “Monte Carlo studies of the intrinsic second hyperpolarizability,” J. Opt. Soc. Am. B 27, 1849–1856 (2010). [CrossRef]
  15. T. J. Atherton, J. Lesnefsky, G. A. Wiggers, and R. G. Petschek, “Maximizing the hyperpolarizability poorly determines the potential,” J. Opt. Soc. Am. B 29, 513–520 (2012).
  16. M. Kuzyk and C. Dirk, “Effects of centrosymmetry on the nonresonant electronic third-order nonlinear optical susceptibility,” Phys. Rev. A 41, 5098 (1990). [CrossRef]
  17. G. Wiggers and R. Petschek, “Comment on ‘pushing the hyperpolarizability to the limit’,” Opt. Lett. 32, 942–943(2007). [CrossRef]
  18. S. Shafei and M. G. Kuzyk, “Critical role of the energy spectrum in determining the nonlinear-optical response of a quantum system,” J. Opt. Soc. Am. B 28, 882–891 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited