OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1688–1693

Direct experimental simulation of the Yang–Baxter equation

Chao Zheng, Jun-lin Li, Si-yu Song, and Gui Lu Long  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1688-1693 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (426 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Having been introduced in the field of many bodies of statistical mechanics, the Yang–Baxter equation has become an important tool in a variety of fields of physics. In this work, we report the first direct experimental simulation of the Yang–Baxter equation using linear quantum optics. The equality between the two sides of the Yang–Baxter equation in two dimension has been demonstrated directly, and the spectral parameter transformation in the Yang–Baxter equation is explicitly confirmed.

© 2013 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: February 12, 2013
Manuscript Accepted: March 25, 2013
Published: May 27, 2013

Chao Zheng, Jun-lin Li, Si-yu Song, and Gui Lu Long, "Direct experimental simulation of the Yang–Baxter equation," J. Opt. Soc. Am. B 30, 1688-1693 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction,” Phys. Rev. Lett. 19, 1312–1315 (1967). [CrossRef]
  2. C. N. Yang, “S matrix for the one-dimensional N-body problem with repulsive or attractive δ-function interaction,” Phys. Rev. 168, 1920–1923 (1968). [CrossRef]
  3. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, 1982).
  4. R. J. Baxter, “Partition function of the Eight-Vertex lattice model,” Ann. Phys. 70, 193–228 (1972). [CrossRef]
  5. Yang-Baxter Equation in Integrable Systems, M. Jimbo, ed. (World Scientific, 1990).
  6. I. B. Frenkel and N. Jing, “Vertex representations of quantum affine algebras,” Proc. Natl. Acad. Sci. USA 85, 9373–9377 (1988). [CrossRef]
  7. M. Gerstenhaber and S. D. Schack, “Bialgebra cohomology, deformations, and quantum groups,” Proc. Natl. Acad. Sci. USA 87, 478–481 (1990). [CrossRef]
  8. C. N. Yang and M. L. Ge, Braid Group, Knot Theory and Statistical Mechanics, 2nd ed. (World Scientific, 1994), pp. 1–176.
  9. S. C. Billey, “Kostant polynomials and the cohomology ring for G/B,” Proc. Natl. Acad. Sci. USA 94, 29–32 (1997).
  10. C. P. Sun, “The differential realization of new solutions for Yang–Baxter equation,” Chin. Sci. Bull. 37, 379 (1992).
  11. P. Gui, “Another solution of Yang–Baxter equation on set and ‘metahomomorphisms on groups’,” Chin. Sci. Bull. 42, 1852–1855 (1997). [CrossRef]
  12. H. X. Chen, “Cpcycle deformations, braided monoidal categories and quasitriangularity,” Chin. Sci. Bull. 44, 510–513 (1999). [CrossRef]
  13. D. P. Hou and C. M. Bai, “J-dendriform algebras,” Front. Math. Chin. 7, 29–49 (2012). [CrossRef]
  14. J. Dubail, J. L. Jacobsen, and H. Saleur, “Exact solution of the anisotropic special transition in the O(n) model in two dimensions,” Phys. Rev. Lett. 103, 145701 (2009). [CrossRef]
  15. D. C. Mattis, The Many-Body Problem (World Scientific, 1993), pp. 419–472.
  16. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000), pp. 1–607.
  17. S. S. Li, G. L. Long, F. S. Bai, S. L. Feng, and H. Z. Zheng, “Quantum computing,” Proc. Natl. Acad. Sci. USA 98, 11847–11848 (2001). [CrossRef]
  18. Y. Zhang and M. L. Ge, “GHZ states, almost-complex structure and Yang–Baxter equation,” Quantum Inf. Process. 6, 363–379 (2007). [CrossRef]
  19. J. L. Chen, K. Xue, and M. L. Ge, “Braiding transformation, entanglement swapping, and Berry phase in entanglement space,” Phys. Rev. A 76, 042324 (2007). [CrossRef]
  20. H. A. Dye, “Unitary solutions to the Yang–Baxter equation in dimension four,” Quant. Info. Proc. 2, 117–152 (2003). [CrossRef]
  21. L. H. Kauffman and S. J. Lomonaco, “Braiding operators are universal quantum gates,” New J. Phys. 6, 134 (2004). [CrossRef]
  22. Y. Zhang, L. H. Kauffman, and M. L. Ge, “Universal quantum gate, Yang–Baxterization and Hamiltonian,” Int. J. Quantum. Inform. 3, 669–678 (2005). [CrossRef]
  23. J. M. Franko, E. C. Rowell, and Z. Wang, “Extraspecial 2-groups and images of braid group representations,” J. Knot Theory Ramif. 15, 413–427 (2006). [CrossRef]
  24. E. C. Rowell, Y. Zhang, Y. S. Wu, and M. L. Ge, “Extraspecial two-groups, generalized Yang–Baxter equations and braiding quantum gates,” Quantum Inf. Comput. 10, 685–702 (2010).
  25. A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Ann. Phys. 303, 2–30 (2003). [CrossRef]
  26. M. H. Freedman, A. Y. Kitaev, and Z. H. Wang, “Simulation of topological field theories by quantum computers,” Commun. Math. Phys. 227, 587–603 (2002). [CrossRef]
  27. E. Ardonne and K. Schoutens, “Wavefunctions for topological quantum registers,” Ann. Phys. 322, 201–235 (2007). [CrossRef]
  28. A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev, Z. Wang, and M. H. Freedman, “Interacting anyons in topological quantum liquids: the golden chain,” Phys. Rev. Lett. 98, 160409 (2007). [CrossRef]
  29. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083–1159 (2008). [CrossRef]
  30. K. Hikami, “Skein theory and topological quantum registers: braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states,” Ann. Phys. 323, 1729–1769 (2008). [CrossRef]
  31. S. Bose and V. Korepin, “Quantum gates between flying qubits via spin-independent scattering,” http://arxiv.org/abs/1106.2329v1 .
  32. X. C. Yao, T. X. Wang, H. Z. Chen, W. B. Gao, A. G. Fowler, R. Raussendorf, Z. B. Chen, N. L. Liu, C. Y. Lu, Y. J. Deng, Y. A. Chen, and J. W. Pan, “Experimental demonstration of topological error correction,” Nature 482, 489–494 (2012). [CrossRef]
  33. D. A. Tennant, T. G. Perring, R. A. Cowley, and S. E. Nagler, “Unbound spinons in the S=1/2 antiferromagnetic chain KCuF3,” Phys. Rev. Lett. 70, 4003–4006 (1993). [CrossRef]
  34. D. A. Tennant, R. A. Cowley, S. E. Nagler, and A. M. Tsvelik, “Measurement of the spin-excitation continuum in one-dimensional KCuF3 using neutron scattering,” Phys. Rev. B 52, 13368–13380 (1995). [CrossRef]
  35. Y. A. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K. Baur, and E. J. Mueller, “Spin-imbalance in a one-dimensional Fermi gas,” Nature 467, 567–569 (2010). [CrossRef]
  36. S. W. Hu, K. Xue, and M. L. Ge, “Optical simulation of the Yang-Baxter equation,” Phys. Rev. A 78, 022319 (2008). [CrossRef]
  37. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  38. J. L. O’ Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003). [CrossRef]
  39. H. N. V. Temperley and E. H. Lieb, “Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem,” Proc. R. Soc. London Ser. A 322, 251–280 (1971). [CrossRef]
  40. J. Lu, L. Zhou, and L. M. Kuang, “Linear optics implementation for quantum game with two players,” Phys. Lett. A 330, 48–53 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited