OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2043–2047

Design of polarization beam splitter based on coupled rods in a square-lattice photonic crystal

Maurice Sesay, Xin Jin, and Zhengbiao Ouyang  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2043-2047 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002043


View Full Text Article

Enhanced HTML    Acrobat PDF (1169 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we design a polarization splitter by combining a photonic crystal waveguide and internal polarization-selective rods leading to a spatial separation of two orthogonal polarizations for mid-infrared applications. The performance of the splitter is investigated by tuning the length of the polarization-selection rods or defect rods for both the polarization extinction ratio (PER) and degree of polarization (DoP). At optimized parameter of the selective rods, the DoP obtained a high value as 1 and the PER obtained a higher value greater than 30 dB for both TE- and TM-polarized lights.

© 2013 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices
(250.5300) Optoelectronics : Photonic integrated circuits
(310.1210) Thin films : Antireflection coatings
(230.5298) Optical devices : Photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: April 1, 2013
Revised Manuscript: May 31, 2013
Manuscript Accepted: June 2, 2013
Published: July 5, 2013

Citation
Maurice Sesay, Xin Jin, and Zhengbiao Ouyang, "Design of polarization beam splitter based on coupled rods in a square-lattice photonic crystal," J. Opt. Soc. Am. B 30, 2043-2047 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-8-2043


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices,” Phys. Rev. B 46, 4969–4972 (1992). [CrossRef]
  2. P. R. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square lattices-square and circular rods,” Phys. Rev. B 46, 4973–4975 (1992). [CrossRef]
  3. P.-K. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245–248 (1994). [CrossRef]
  4. L. B. Soldano, A. H. Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett. 6, 402–405 (1994). [CrossRef]
  5. A. Rostami, F. Nazari, H. Alipour, and A. Bahrami, “A novel proposal for DWDM design using modified-T photonic crystal structure,” Photon. Nanostruct. Fundam. Applic. 8, 14–22 (2010). [CrossRef]
  6. W. Jia, L. Y. Jiang, K. Chen, and X. Y. Li, “Design of photonic crystal power beam splitters via grating-like surfaces,” Opt. Commun. 283, 4078–4084 (2010). [CrossRef]
  7. V. Zabelin, L. A. Dunbar, N. L. Thomas, and R. Houdre, “Self-collimating photonic crystal polarization beam splitter” Opt. Lett. 32, 530–532 (2007). [CrossRef]
  8. T. B. Yu, X. Q. Jiang, Q. H. Liao, W. Qi, J. Y. Yang, and M. H. Wang, “Self-imaging effect in photonic crystal multimode waveguides exhibiting no band gaps,” Chin. Opt. Lett. 5, 690–692 (2007).
  9. Y. Y. Tsuji, Y. Morita, and K. Hirayama, “Photonic crystal waveguide based on 2-D photonic crystal with absolute photonic band gap,” IEEE Photon. Technol. Lett. 20, 982–984, (2008). [CrossRef]
  10. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429–9431 (2003). [CrossRef]
  11. S. K. Mondal and B. J. H. Stadler, “Novel designs for integrating YIG/Air photonic crystal slab polarizers with waveguide faraday rotators,” IEEE Photon. Technol. Lett. 17, 127–129 (2005). [CrossRef]
  12. D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures,” Phys. Rev. B 53, 7134–7142 (1996). [CrossRef]
  13. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998). [CrossRef]
  14. S. W. Wang, W. Lu, X. S. Chen, M. Zhou, and X. C. Shen, “Photonic band gap in two-dimensional anisotropic photonic crystal with rectangular bars,” Int. J. Infrared Millim. Waves 24, 963–971 (2003). [CrossRef]
  15. C. M. Anderson and K. P. Giapis, “Larger two-dimensional photonic band gaps,” Phys. Rev. Lett. 77, 2949–2952 (1996). [CrossRef]
  16. T. Trifonov, L. F. Marsal, A. Rodŕıguez, J. Pallaŕes, and R. Alcubilla, “Effects of symmetry reduction in two dimensional square and triangular lattices,” Phys. Rev. B 69, 235112 (2004). [CrossRef]
  17. N. Malkova, S. Kim, T. Dilazaro, and V. Gopalon, “Symmetrical analysis of complex two-dimensional hexagonal photonic crystals,” Phys. Rev. B 67, 125203 (2003). [CrossRef]
  18. K. P. Chang and S. L. Yang, “Photonic band gap of two-dimensional triangular photonic crystals with broken structural and rotational symmetries,” J. Appl. Phys. 100, 073104 (2006). [CrossRef]
  19. T. Pan and Z. Y. Li, “The effect of etching interfacial layers on the absolute photonic band gap in two-dimensional photonic crystals,” Solid State Commun. 128, 187–191 (2003). [CrossRef]
  20. T. Trifonov, L. F. Marsal, A. Rodriguez, J. Pallares, and R. Alcubilla, “Analysis of photonic band gap in two dimensional photonic crystals with rods covered by a thin interfacial layer,” Phys. Rev. B 70, 195108 (2004). [CrossRef]
  21. T. Pan, F. Zhuang, and Z. Y. Li, “Absolute photonic band gaps in a two-dimensional photonic crystal with hollow anisotropic rods,” Solid State Commun. 129, 501–506 (2004). [CrossRef]
  22. B. Rezaei and M. Klafi, “Engineering absolute band gap in anisotropic hexagonal photonic crystals,” Opt. Commun. 266, 159–163 (2006). [CrossRef]
  23. S. Eckhardt, C. Bruzzone, D. Aastuen, and J. Ma, “3M PBS for high-performance LCOS optical engine,” Proc. SPIE 5002, 106–110 (2003).
  24. G. D. Bernard and R. Wehner, “Functional similarities between polarization vision and color vision,” Vision Res. 17, 1019–1028 (1977). [CrossRef]
  25. T. W. Cronin, N. Shashar, R. L. Caldwell, J. Marshall, A. G. Cheroske, and T.-H. Chiou, “Polarization vision and its role in biological signaling,” Integr. Comp. Biol. 43, 549–558 (2003). [CrossRef]
  26. Y.-D. Wu, H.-Y. Jiang, J.-J. Lee, T.-T. Shih, and C.-L. Liu, “New design of the polarization beam splitter based on photonic crystals,” in the 16th OptoElectronics and Communications Conference (OECC) (IEEE, 2011).
  27. R. K. Sinha and Y. Kalra, “Design of photonic bandgap polarizer,” Opt. Eng. Lett. 45, 110503 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited