Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Full-wave finite-difference time-domain analysis of the invisibility cloak mapped to a line segment with isotropic complementary media

Not Accessible

Your library or personal account may give you access

Abstract

A dispersive full-wave finite-difference time-domain model is used to study the performance of point mapped and line-segment mapped complementary invisibility cloaking devices. We have used the permittivity and the permeability tensors for conventional elliptic and bipolar cylindrical invisibility cloaks obtained from an effective medium approach in general relativity. In the case of a line-segment mapped cloak we also employ the mapping of the σ-axis in bipolar cylindrical coordinates. In these cloaks, we employ the complementary media both horizontally and vertically. Cloaks with horizontally or vertically arranged complementary media mapped to a point show good performance of cloaking in any case. On the other hand, cloaks with horizontally arranged complementary media mapped to a line-segment, do not show cloaking performance. However, for cloaks with vertically arranged complementary media mapped to a line-segment, cloaking works very well in any cases. These results show improved cloaking performance over the conventional cloaks with perfect electrical conductor mapped to a line-segment. On the other hand, realistic cloaking materials with loss still show cloaking but attenuated backscattering waves exist.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures

Yan Zhao, Christos Argyropoulos, and Yang Hao
Opt. Express 16(9) 6717-6730 (2008)

Fourier optics theory for invisibility cloaks

Kedi Wu, Qiluan Cheng, and Guo Ping Wang
J. Opt. Soc. Am. B 28(6) 1467-1474 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved