OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2191–2198

Short-pulse perturbation theory

Edward D. Farnum and J. Nathan Kutz  »View Author Affiliations

JOSA B, Vol. 30, Issue 8, pp. 2191-2198 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (403 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A perturbation theory for the short-pulse equation is developed to investigate the effects of various perturbations on optical solitons propagating in nonlinear media in the few femtosecond to subfemtosecond regime. The theory is formulated using a variational approach since linearization of the exact solution is not tractable. A variety of physically realizable perturbations are considered, culminating in perturbations that result from considering short-pulse mode locking. In each case, the analytic results presented are in agreement with full numerical simulations of the short-pulse theory. Given the tremendous success of soliton perturbation theory in the theoretical realm of optical solitons, the short-pulse perturbation theory attempts to provide the same theoretical framework for understanding physically realizable mechanisms that affect pulse evolution and stability when nearing the attosecond regime.

© 2013 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 23, 2013
Revised Manuscript: June 7, 2013
Manuscript Accepted: June 7, 2013
Published: July 18, 2013

Edward D. Farnum and J. Nathan Kutz, "Short-pulse perturbation theory," J. Opt. Soc. Am. B 30, 2191-2198 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Backus, C. G. Durfee, M. M. Murname, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207–1233 (1998). [CrossRef]
  2. C. Spielmann, P. F. Curley, T. Brabec, and F. Krausz, “Ultrabroadband femtosecond lasers,” IEEE J. Quantum Electron. 30, 1100–1114 (1994). [CrossRef]
  3. D. H. Sutter, I. D. Jung, F. X. Kärtner, N. Matuschek, F. Morier-Genoud, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, “Self-starting 6.5 fs pulses from a Ti:sapphire laser using a semiconductor saturable absorber and double-chirped mirrors,” IEEE J. Sel. Top. Quantum Electron. 4, 169–178 (1998). [CrossRef]
  4. R. Ell, G. Angelow, W. Seitz, M. J. Lederer, H. Huber, D. Kopf, J. R. Birge, and F. X. Kärtner, “Quasi-synchronous pumping of modelocked few-cycle titanium sapphire lasers,” Opt. Express 13, 9292–9298 (2005). [CrossRef]
  5. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” J. Opt. Soc. Am. B 19, 382–385 (2001). [CrossRef]
  6. U. Keller, “Ultrafast solid-state lasers,” Prog. Opt. 46, 1–115 (2004). [CrossRef]
  7. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509–513 (2001). [CrossRef]
  8. A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004). [CrossRef]
  9. Y. Silberberg, “Physics at the attosecond frontier,” Nature 414, 494–495 (2001). [CrossRef]
  10. A. Scrinzi, M. Yu. Ivanov, R. Kienberger, and D. M. Villeneuve, “Attosecond physics,” J. Phys. B 39, R1–R37 (2006). [CrossRef]
  11. S. T. Cundiff, “Attosecond physics: better by half,” Nat. Phys. 3, 16–18 (2007). [CrossRef]
  12. S. T. Cundiff, “Femtosecond comb technology,” J. Korean Phys. Soc. 48, 1181–1187 (2006).
  13. S. T. Cundiff, S. J. Ye, and J. Hall, “Rulers of light,” Sci. Am. 298, 74–81 (2008). [CrossRef]
  14. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000). [CrossRef]
  15. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629–678 (2006). [CrossRef]
  16. Sh. Amiranashvili, A. G. Vladimirov, and U. Bandelow, “Solitary-wave solutions for few-cycle optical pulses,” Phys. Rev. A 77, 063821 (2008). [CrossRef]
  17. M. Pietrzyk, I. Kanattsikov, and U. Bandelow, “On the propagation of vector ultra-short pulses,” J. Nonlin. Math. Phys. 15, 170–262 (2008). [CrossRef]
  18. H. Leblond and D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation,” Phys. Rep. 523, 61–126 (2013). [CrossRef]
  19. T. Schafer and C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media,” Physica D 196, 90–105 (2004). [CrossRef]
  20. Y. Chung, C. K. R. Jones, and T. Schafer, “Ultra-short pulses in linear and nonlinear media,” Nonlinearity 18, 1351–1374 (2005). [CrossRef]
  21. E. V. Kazantseva, A. I. Maimistov, and J. -G. Caputo, “Reduced Maxwell-Duffing description of extremely short pulses in nonresonant media,” Phys. Rev. E 71, 056622 (2005). [CrossRef]
  22. S. V. Sazonov, “Nonlinear theory of transverse perturbations of quasi-one-dimensional solitons,” J. Exp. Theor. Phys. 92, 361 (2001). [CrossRef]
  23. H. Leblond and D. Mihalache, “Few-optical cycle solitons: modified Korteweg-de Vries sine-Gordon equation versus other non-slowly varying envelope approximation models,” Phys. Rev. A 79, 063835 (2009). [CrossRef]
  24. E. Farnum and J. N. Kutz, “Master mode-locking theory for few-femtosecond pulses,” Opt. Lett. 35, 3033–3035 (2010). [CrossRef]
  25. E. Farnum and J. N. Kutz, “Mode locking in the few-femtosecond regime using waveguide arrays and the coupled short-pulse equations,” IEEE J. Sel. Top. Quantum Electron. 18, 113–118 (2012). [CrossRef]
  26. H. Leblond and D. Mihalache, “Few-optical-cycle dissipative solitons,” J. Phys. A 43, 375205 (2010). [CrossRef]
  27. J. Elgin, “Perturbations of optical solitons,” Phys. Rev. A 47, 4331–4341 (1993). [CrossRef]
  28. D. J. Kaup, “Perturbation theory for solitons in optical fibers,” Phys. Rev. A 42, 5689–5694 (1990). [CrossRef]
  29. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986). [CrossRef]
  30. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef]
  31. T. Kapitula, J. N. Kutz, and B. Sandstede, “Stability of pulses in the master-modelocking equation,” J. Opt. Soc. Am. B 19, 740–746 (2002). [CrossRef]
  32. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 9, 91–97 (1992). [CrossRef]
  33. P. V. Mamyshev and L. F. Mollenauer, “Soliton collisions in wavelength-division-multiplexed dispersion-managed systems,” Opt. Lett. 24, 448–450 (1999). [CrossRef]
  34. P. V. Mamyshev and L. F. Mollenauer, “Pseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission,” Opt. Lett. 21, 396–398 (1996). [CrossRef]
  35. A. Bondeson, M. Lisak, and D. Anderson, “Soliton perturbations: a variational principle for the soliton parameters,” Phys. Scr. 20, 479–485 (1979). [CrossRef]
  36. B. Bale and J. N. Kutz, “Variational method for mode-locked lasers,” J. Opt. Soc. Am. B 25, 1193–1202 (2008). [CrossRef]
  37. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwells to unidirectional equations,” Phys. Rev. E 70, 036604 (2004). [CrossRef]
  38. A. Sakovich and S. Sakovich, “The short pulse equation is integrable,” J. Phys. Soc. Jpn. 74, 239–241 (2005). [CrossRef]
  39. A. Sakovich and S. Sakovich, “Solitary wave solutions of the short pulse equation,” J. Phys. A 39, L361–L367 (2006). [CrossRef]
  40. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991). [CrossRef]
  41. J. C. Brunelli, “The bi-Hamiltonian structure of the short pulse equation,” Phys. Lett. A 353, 475–478 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited