OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 8 — Aug. 1, 2013
  • pp: 2333–2339

Coherent generation and efficient manipulation of dual-channel robust stationary light pulses in ultracold atoms

Yan Zhang, Qian-Qian Bao, Nuo Ba, Cui-Li Cui, and Jin-Hui Wu  »View Author Affiliations


JOSA B, Vol. 30, Issue 8, pp. 2333-2339 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002333


View Full Text Article

Enhanced HTML    Acrobat PDF (1115 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the dynamic processes of reversible dual-channel light memory in a double-tripod atomic system by modulating only a pair of counterpropagating control fields in time. We find that two pairs of stationary light pulses (SLPs) can be simultaneously generated when we switch on both control fields after storage. Two incident signal fields in two channels can be released either simultaneously from the same surface of the sample, or at different times from the same or different surfaces of the sample, depending on the time modulation of the two control fields, the time sequence of the input signal fields, and the group velocities of the signal fields propagating in medium, which could be successfully manipulated in each channel. Comparing with the light storage in spin-wave excitations, the SLPs may suffer a little space-dependent diffusion but maintain optical components required for nonlinear optical interactions. These results could be used to study the enhanced low-noises nonlinear interaction between dual-channel SLPs, which can maximize the interaction time. Besides, this scheme could also be explored to design synchronous multitasking information processing during light memory processes at low-light even below single-photon level.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: March 4, 2013
Revised Manuscript: July 6, 2013
Manuscript Accepted: July 12, 2013
Published: August 1, 2013

Citation
Yan Zhang, Qian-Qian Bao, Nuo Ba, Cui-Li Cui, and Jin-Hui Wu, "Coherent generation and efficient manipulation of dual-channel robust stationary light pulses in ultracold atoms," J. Opt. Soc. Am. B 30, 2333-2339 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-8-2333


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010). [CrossRef]
  2. C. Simon, M. Afzelius, J. Appel, A. B. de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kroll, J. H. Muller, J. Nunn, E. Polzik, J. Rarity, H. de Reidmatten, W. Rosenfeld, A. J. Shields, N. Skold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories: a review based on the European integrated project ‘Qubit Applications (QAP)’,” Eur. Phys. J. D 58, 1–22 (2010). [CrossRef]
  3. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003). [CrossRef]
  4. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  5. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  6. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulsed,” Nature 409, 490–493 (2001). [CrossRef]
  7. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, “Storage and retrieval of single photons transmitted between remote quantum memories,” Nature 438, 833–836 (2005). [CrossRef]
  8. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett. 98, 203601 (2007). [CrossRef]
  9. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008). [CrossRef]
  10. T. Peters, Y.-H. Chen, J.-S. Wang, Y.-W. Lin, and I. A. Yu, “Optimizing the retrieval efficiency of stored light pulses,” Opt. Express 17, 6665–6675 (2009). [CrossRef]
  11. K. R. Hansen and K. Molmer, “Trapping of light pulses in ensembles of stationary Λ atoms,” Phys. Rev. A 75, 053802 (2007). [CrossRef]
  12. Y.-W. Lin, W.-T. Liao, T. Peters, H.-C. Chou, J.-S. Wang, H.-W. Cho, P.-C. Kuan, and I. A. Yu, “Stationary light pulses in cold atomic media and without Bragg gratings,” Phys. Rev. Lett. 102, 213601 (2009). [CrossRef]
  13. J.-H. Wu, M. Artoni, and G. C. La Rocca, “Decay of stationary light pulses in ultracold atoms,” Phys. Rev. A 81, 033822 (2010). [CrossRef]
  14. J.-H. Wu, M. Artoni, and G. C. La Rocca, “Stationary light pulses in cold thermal atomic clouds,” Phys. Rev. A 82, 013807 (2010). [CrossRef]
  15. A. André, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Nonlinear optics with stationary pulses of light,” Phys. Rev. Lett. 94, 063902 (2005). [CrossRef]
  16. T. Peters, Y.-H. Chen, J.-S. Wang, Y.-W. Lin, and I. A. Yu, “Observation of phase variation within stationary light pulses inside a cold atomic medium,” Opt. Lett. 35, 151–153 (2010). [CrossRef]
  17. C. Hang and G.-X. Huang, “Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with gain doublet,” Opt. Express 18, 2952–2966 (2010). [CrossRef]
  18. Y.-H. Chen, M.-J. Lee, W.-L. Hung, Y.-C. Chen, Y.-F. Chen, and I. A. Yu, “Demonstration of the interaction between two stopped light pulses,” Phys. Rev. Lett. 108, 173603 (2012). [CrossRef]
  19. H. Wang, S.-J. Li, Z.-X. Xu, X.-B. Zhao, L.-J. Zhang, J.-H. Li, Y.-L. Wu, C.-D. Xie, K.-C. Peng, and M. Xiao, “Quantum interference of stored dual-channel spin-wave excitations in a single tripod system,” Phys. Rev. A 83, 043815 (2011). [CrossRef]
  20. S. A. Moiseev and B. S. Ham, “Quantum manipulation of two-color stationary light: quantum wavelength conversion,” Phys. Rev. A 73, 033812 (2006). [CrossRef]
  21. S. A. Moiseev, Y. Chen, and B. S. Ham, “Numerical analysis of stationary light for potential applications of quantum interface,” J. Korean Phys. Soc. 49, 2293–2302 (2006).
  22. Y. Zhang, Y. Zhang, X.-H. Zhang, M. Yu, C.-L. Cui, and J.-H. Wu, “Efficient generation and control of robust stationary light signals in a double-Λ system of cold atoms,” Phys. Lett. A 376, 656–661 (2012). [CrossRef]
  23. S. A. Moiseev and B. S. Ham, “Quantum control and manipulations of three-color stationary light,” J. Korean Phys. Soc. 48, 540–545 (2006).
  24. B. S. Ham, “Quantum control and manipulation of multi-color light fields,” Opt. Spectrosc. 103, 210–218 (2007). [CrossRef]
  25. A. Joshi and M. Xiao, “Generalized dark-state polaritons for photon memory in multilevel atomic media,” Phys. Rev. A 71, 041801 (2005). [CrossRef]
  26. A. Raczynski, J. Zaremba, and S. Zielinska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007). [CrossRef]
  27. Q.-Q. Bao, X.-H. Zhang, J.-Y. Gao, Y. Zhang, C.-L. Cui, and J.-H. Wu, “Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms,” Phys. Rev. A 84, 063812 (2011). [CrossRef]
  28. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004). [CrossRef]
  29. C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, and J.-H. Wu, “Ultraslow and superluminal light propagation in a four-level atomic system,” Phys. Rev. A 76, 033815 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited