OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 255–258

Robust existence of the broadband optical transmission effect in multiple-layer gratings

Yanjun Bao, Yumin Hou, and Zongpeng Wang  »View Author Affiliations


JOSA B, Vol. 31, Issue 2, pp. 255-258 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000255


View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically demonstrate the existence and robustness of the broadband optical transmission (BOT) effect in double-layer gratings (DLGs) with different longitudinal spacings and lateral displacements. For the two scenarios of large and ultrasmall longitudinal spacings, the different physical mechanisms by which BOT occurs through the gaps between the two layers are analyzed based on the surface charge densities. Besides the DLG structures, the robustness of the BOT phenomenon can also be extended to exist in multiple-layer gratings with more layers. This provides a highly controllable way to design novel devices, such as transparent multiple-layer metals, broadband metamaterials, and novel polarization filters.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.4170) Optical devices : Multilayers
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 5, 2013
Revised Manuscript: November 9, 2013
Manuscript Accepted: December 12, 2013
Published: January 15, 2014

Citation
Yanjun Bao, Yumin Hou, and Zongpeng Wang, "Robust existence of the broadband optical transmission effect in multiple-layer gratings," J. Opt. Soc. Am. B 31, 255-258 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-2-255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007). [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef]
  5. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998). [CrossRef]
  6. L. M. Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001). [CrossRef]
  7. F. J. Garcia-Vidal, L. M. Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  8. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef]
  9. F. van Beijnum, C. Rétif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. van Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012). [CrossRef]
  10. P. Lalanne, J. P. Hugonina, H. T. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-λ metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009). [CrossRef]
  11. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef]
  12. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239, 61–66 (2004). [CrossRef]
  13. F. J. García-Vidal, L. M. Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006). [CrossRef]
  14. X. R. Huang, R. W. Peng, and R. H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010). [CrossRef]
  15. R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, “Transparent metals for ultrabroadband electromagnetic waves,” Adv. Mater. 24, 1980–1986 (2012). [CrossRef]
  16. A. Alù, G. Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011). [CrossRef]
  17. C. Argyropoulos, G. Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012). [CrossRef]
  18. N. Akozbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. A. Vincenti, M. Scalora, and M. J. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012). [CrossRef]
  19. C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008). [CrossRef]
  20. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518 (2006). [CrossRef]
  21. K. Akiyama, K. Takano, Y. Abe, Y. Tokuda, and M. Hangyo, “Optical transmission anomalies in a double-layered metallic slit array,” Opt. Express 18, 17876–17882 (2010). [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  24. L. Wang and Z. M. Zhang, “Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays,” J. Opt. Soc. Am. B 27, 2595–2604 (2010). [CrossRef]
  25. X. R. Huang, R. W. Peng, Z. Wang, F. Gao, and S. S. Jiang, “Charge-oscillation-induced light transmission through subwavelength slits and holes,” Phys. Rev. A 76, 035802 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited