OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 259–269

Quantum conductivity for metal–insulator–metal nanostructures

Joseph W. Haus, Domenico de Ceglia, Maria Antonietta Vincenti, and Michael Scalora  »View Author Affiliations


JOSA B, Vol. 31, Issue 2, pp. 259-269 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000259


View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a methodology based on quantum mechanics for assigning quantum conductivity when an ac field is applied across a variable gap between two plasmonic nanoparticles with an insulator sandwiched between them. The quantum tunneling effect is portrayed by a set of quantum conductivity coefficients describing the linear ac conductivity responding at the frequency of the applied field, and nonlinear coefficients that modulate the field amplitude at the fundamental frequency and its harmonics. The quantum conductivity, determined with no fit parameters, has both frequency and gap dependence that can be applied to determine the nonlinear quantum effects of strong applied electromagnetic fields, even when the system is composed of dissimilar metal nanostructures. Our methodology compares well to results on quantum tunneling effects reported in the literature, and is simple to extend to a number of systems with different metals and different insulators between them.

© 2014 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 23, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: December 3, 2013
Published: January 15, 2014

Citation
Joseph W. Haus, Domenico de Ceglia, Maria Antonietta Vincenti, and Michael Scalora, "Quantum conductivity for metal–insulator–metal nanostructures," J. Opt. Soc. Am. B 31, 259-269 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-2-259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Vol. 111.
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  4. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45, 433001 (2012). [CrossRef]
  5. N. J. Halas, L. Surbhi, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]
  6. N. C. Nyquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S.-H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75, 036501 (2012). [CrossRef]
  7. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012). [CrossRef]
  8. Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013). [CrossRef]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  10. M. L. Brongersma, R. Zia, and J. A. Schuller, “Plasmonics—the missing link between nanoelectronics and microphotonics,” J. Appl. Phys. A 89, 221–223 (2007). [CrossRef]
  11. N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85, 205430 (2012). [CrossRef]
  12. M. Grande, G. V. Bianco, M. A. Vincenti, T. Stomeo, D. de Ceglia, M. De Vittorio, V. Petruzzelli, M. Scalora, G. Bruno, and A. D’Orazio, “Experimental surface-enhanced Raman scattering response of two-dimensional finite arrays of gold nanopatches,” Appl. Phys. Lett. 101, 111606 (2012). [CrossRef]
  13. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
  14. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, “Interaction between plasmonic nanoparticles revisited with transformation optics,” Phys. Rev. Lett. 105, 233901 (2010). [CrossRef]
  15. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008). [CrossRef]
  16. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009). [CrossRef]
  17. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS Nano 4, 5269–5276 (2010). [CrossRef]
  18. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
  19. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012). [CrossRef]
  20. R. Alvarez-Puebla, L. M. Liz-Marzan, and F. J. Garcia de Abajo, “Light concentration at the nanometer scale,” J. Phys. Chem. Lett. 1, 2428–2434 (2010). [CrossRef]
  21. C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012). [CrossRef]
  22. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21, 27306–27325 (2013). [CrossRef]
  23. C. Fumeaux, W. Herrmann, F. K. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998). [CrossRef]
  24. M. R. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. F. Middleton, and G. D. Boreman, “Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR,” Proc. SPIE 5410, 238 (2004). [CrossRef]
  25. P. C. Hobbs, R. B. Laibowitz, F. R. Libsch, N. C. LaBianca, and P. P. Chiniwalla, “Efficient waveguide-integrated tunnel junction detectors at 1.6 μm,” Opt. Express 15, 16376–16389 (2007). [CrossRef]
  26. M. Nagae, “Response time of metal-insulator-metal tunnel junctions,” Jpn. J. Appl. Phys. 11, 1611–1621 (1972). [CrossRef]
  27. W. Tantraporn, “Electron current through metal-insulator-metal sandwiches,” Solid-State Electron. 7, 81–91 (1964). [CrossRef]
  28. L. O. Hocker, D. R. Sokoloff, V. Daneu, and A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. 12, 401–402 (1968).
  29. A. Sanchez, C. F. Davis, K. C. Liu, and A. Javan, “The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies,” J. Appl. Phys. 49, 5270–5277 (1978). [CrossRef]
  30. M. Dagenais, K. Choi, F. Yesilkoy, A. N. Chryssis, and M. C. Peckerar, “Solar spectrum rectification using nano-antennas and tunneling diodes,” Proc. SPIE 7605, 76050E (2010). [CrossRef]
  31. S. Bhansali, S. Krishnan, E. Stefanakos, and D. Y. Goswami, “Tunneling junction based rectenna—a key to ultrahigh efficiency solar/thermal energy conversion,” AIP Conf. Proc. 1313, 79–83 (2010).
  32. S. Grover, O. Dmitriyeva, M. J. Estes, and G. Moddel, “Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna coupled rectifiers,” IEEE Trans. Nanotechnol. 9, 716–722 (2010). [CrossRef]
  33. S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67, 94–99 (2012). [CrossRef]
  34. S. Grover and G. Moddel, “Applicability of metal/insulator/metal (MIM) diodes to solar rectennas,” IEEE J. Photovolt. 1, 78–83 (2011). [CrossRef]
  35. J. W. Haus, L. Li, N. Katte, C. Deng, M. Scalora, D. de Ceglia, and M. A. Vincenti, “Nanowire metal-insulator-metal plasmonic devices,” Proc. SPIE 8883, 888303 (2013). [CrossRef]
  36. H. Kroemer, Quantum Mechanics, 3rd ed. (Prentice-Hall, 1994).
  37. J. G. Simmons, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 1793–1803 (1963). [CrossRef]
  38. J. G. Simmons, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film,” J. Appl. Phys. 34, 2581–2590 (1963). [CrossRef]
  39. R. J. Whitefield and J. J. Brady, “New value for work function of sodium and the observation of surface-plasmon effects,” Phys. Rev. Lett. 26, 380–383 (1971). Erratum: Phys. Rev. Lett. 26, 1005 (1971). [CrossRef]
  40. J. Robertson, “Band offsets of high dielectric constant gate oxides on silicon,” J. Non-Cryst. Solids 303, 94–100 (2002). [CrossRef]
  41. P. K. Tien and J. P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films,” Phys. Rev. 129, 647–651 (1963). [CrossRef]
  42. J. R. Tucker and M. F. Millea, “Photon detection in nonlinear tunneling devices,” Appl. Phys. Lett. 33, 611–613 (1978). [CrossRef]
  43. J. R. Tucker and M. J. Feldman, “Quantum detection at millimeter wavelengths,” Rev. Mod. Phys. 57, 1055–1113 (1985). [CrossRef]
  44. J. R. Tucker, “Quantum limited detection in tunnel junction mixers,” IEEE J. Quantum Electron. QE-15, 1234–1258 (1979). [CrossRef]
  45. M. Scalora, M. A. Vincenti, D. de Ceglia, M. Grande, and J. W. Haus, “Spontaneous and stimulated Raman scattering near metal nanostructures in the ultrafast, high-intensity regime,” J. Opt. Soc. Am. B 30, 2634–2639 (2013). [CrossRef]
  46. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  47. A. Locatelli, C. De Angelis, D. Modotto, S. Boscolo, F. Sacchetto, M. Midrio, A.-D. Capobianco, F. M. Pigozzo, and C. G. Someda, “Modeling of enhanced field confinement and scattering by optical wire antennas,” Opt. Express 17, 16792–16800 (2009). [CrossRef]
  48. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).
  49. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited