OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 340–348

Laser cooling in Yb3+:YAG

Galina Nemova and Raman Kashyap  »View Author Affiliations

JOSA B, Vol. 31, Issue 2, pp. 340-348 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1600 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a detailed theoretical model for laser cooling in Yb3+:YAG. The expressions for the fluorescence power density removed from the system with spontaneous emission, the power density radiated with stimulated emission, as well as the heat power density generated in the system by nonradiative decays on the impurities of the host material have been calculated. The influence of each of these power densities on the cooling process has been analyzed. We show, for the first time to our knowledge, how the temperature dependences of the different parameters of the system as well as the concentration of the impurities in the host influence the final temperature of the cooled sample.

© 2014 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 9, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 13, 2013
Published: January 24, 2014

Galina Nemova and Raman Kashyap, "Laser cooling in Yb3+:YAG," J. Opt. Soc. Am. B 31, 340-348 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929). [CrossRef]
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995). [CrossRef]
  3. S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature,” Opt. Lett. 38, 1588–1590 (2013). [CrossRef]
  4. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3, 67–84 (2009). [CrossRef]
  5. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73, 086501 (2010). [CrossRef]
  6. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012). [CrossRef]
  7. X. Luo, M. D. Eisaman, and T. R. Gosnell, “Laser cooling of a solid by 21 K starting from room temperature,” Opt. Lett. 23, 639–641 (1998). [CrossRef]
  8. T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24, 1041–1043 (1999). [CrossRef]
  9. C. Goutaudier, K. Lebbou, Y. Guyot, M. Ito, H. Canibano, A. El Hassouni, L. Laversenne, M. T. Cohen-Adad, and G. Boulon, “Advances in fibre crystals: growth and optimization of spectroscopic properties for Yb3+-doped laser crystals,” Ann. Chim. 28, 73–88 (2003). [CrossRef]
  10. F. E. Auzel, “Materials and devices using double-pumped-phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973). [CrossRef]
  11. F. Auzel, “Application of resonant energy transfers to the laser effect in Er-doped glasses,” Ann. Telecommun. 24, 363–376 (1969).
  12. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; role of a cavity,” J. Lumin. 94–95, 293–297 (2001). [CrossRef]
  13. P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin. 97, 51–54 (2002). [CrossRef]
  14. C. Y. Chen, R. R. Petrin, D. C. Yeh, and W. A. Sibley, “Concentration-dependent energy-transfer processes in Er3+- and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett. 14, 432–434 (1989). [CrossRef]
  15. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000). [CrossRef]
  16. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992). [CrossRef]
  17. D. C. Brown and V. A. Vitali, “Yb:YAG kinetics model including saturation and power conservation,” IEEE J. Quantum Electron. 47, 3–12 (2011). [CrossRef]
  18. G. G. Demirkhanyan, “Intensities of inter-Stark transitions in YAG:Yb3+crystals,” Laser Phys. 16, 1054–1057 (2006). [CrossRef]
  19. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3, 105–116 (1997). [CrossRef]
  20. F. Auzel, “On the maximum splitting of the (2F7/2) ground state inYb3+-doped solid state laser materials,” J. Lumin. 93, 129–135 (2001). [CrossRef]
  21. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001). [CrossRef]
  22. E. Soares de Lima Filho, G. Nemova, S. Loranger, and R. Kashyap, “Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure,” Opt. Express 21, 24711–24720 (2013). [CrossRef]
  23. M. Esmaeilzadeh, H. Roohbakhsh, and A. Ghaedzadeh, “Experimental study on temperature dependence of absorption and emission properties of Yb:YAG crystal as a disk laser medium,” World Acad. Sci. Eng. Technol. 63, 436–439 (2012).
  24. S. Georgescu, “Mathematical modeling of 3-μm erbium lasers,” in Proceedings of the First French-Romanian Colloquium of Numerical Physics, Bucharest, Romania, October30–31 (2002), pp. 71–103.
  25. B. Zandi, J. B. Gruber, D. K. Sardar, and T. H. Allik, “Modeling of Er in ceramic YAG and comparison with single-crystal YAG,” Proc. SPIE 5792, 26–33 (2005). [CrossRef]
  26. P. Goldner and M. Mortier, “Effect of rare earth impurities on fluorescent cooling in ZBLAN glass,” J. Non-Cryst. Solids 284, 249–254 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited