OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 798–805

Does the optical angular momentum change smoothly in fractional-charged vortex beams?

Tatyana A. Fadeyeva, Alexander F. Rubass, Rodion V. Aleksandrov, and Aleksander V. Volyar  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 798-805 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000798


View Full Text Article

Enhanced HTML    Acrobat PDF (796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the oscillations of the orbital angular momentum in the vortex beams with fractional topological charges, taking into account the vortex influence, beam astigmatism, and the displacement of the center of gravity on the basis of the intensity momenta approach. We revealed also that base contribution gives the optical vortices and displacement of the center of gravity. In addition, we analyze the distribution of the current lines in the erf-G beams with the topological charge p=1/2, revealing that there are two types of the curves: (1) closed C-like lines and (2) the inner closed lines.

© 2014 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(140.3295) Lasers and laser optics : Laser beam characterization
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: December 17, 2013
Revised Manuscript: January 30, 2014
Manuscript Accepted: February 1, 2014
Published: March 13, 2014

Citation
Tatyana A. Fadeyeva, Alexander F. Rubass, Rodion V. Aleksandrov, and Aleksander V. Volyar, "Does the optical angular momentum change smoothly in fractional-charged vortex beams?," J. Opt. Soc. Am. B 31, 798-805 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-798


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  2. J. Zagrodzinski, “Vortices in different branches of physics,” Physica C 369, 45–54 (2002). [CrossRef]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  4. Yu. A. Ushenko, O. V. Dubolazov, and A. O. Karachevtsev, “Statistical structure of skin derma Mueller matrix images in the process of cancer changes,” Opt. Mem. Neural Netw. 20, 145–154 (2011). [CrossRef]
  5. G. A. Swartzlander, “Achromatic optical vortex lens,” Opt. Lett. 31, 2042–2044 (2006). [CrossRef]
  6. L. Allen, S. M. Barnett, and M. J. Padgett, Orbital Angular Momentum (Bristol: Institute of Physics, 2003).
  7. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express 20, 3563–3571 (2012). [CrossRef]
  8. I. Basisty, M. Soskin, and M. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995). [CrossRef]
  9. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A 6, 259–268 (2004). [CrossRef]
  10. M. V. Berry, R. G. Chambers, M. D. Large, C. Upstill, and J. C. Walmsley, “Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue,” Eur. J. Phys. 1, 154–162 (1980). [CrossRef]
  11. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys. 6, 71 (2004). [CrossRef]
  12. H. Garcia-Gracia and J. C. Gutiérrez-Vega, “Diffraction of plane waves by finite-radius spiral phase plates of integer and fractional topological charge,” J. Opt. Soc. Am. A 26, 794–803 (2009). [CrossRef]
  13. J. C. Gutiérrez-Vega and C. López-Mariscal, “Nondiffracting vortex beams with continuous orbital angular momentum order dependence,” J. Opt. A 10, 015009 (2008). [CrossRef]
  14. J. C. Gutiérrez-Vega, “Fractionalization of optical beams: I. Planar analysis,” Opt. Lett. 32, 1521–1523 (2007). [CrossRef]
  15. J. C. Gutiérrez-Vega, “Fractionalization of optical beams: II. Elegant Laguerre–Gaussian modes,” Opt. Express 15, 6300–6313 (2007). [CrossRef]
  16. S. S. R. Oemrawsingh, X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. ’t Hooft, and J. P. Woerdman, “Experimental demonstration of fractional orbital angular momentum entanglement of two photons,” Phys. Rev. Lett. 95, 240501 (2005). [CrossRef]
  17. T. A. Fadeyeva, C. Alexeyev, A. Rubass, and A. Volyar, “Vector erf-Gaussian beams: fractional optical vortices and asymmetric TE and TM modes,” Opt. Lett. 37, 1397–1399 (2012). [CrossRef]
  18. A. P. Kiselev, “Localized light waves: Paraxial and exact solutions of the wave equation (a review),” Opt. Spectrosc. 102, 603–622 (2007). [CrossRef]
  19. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed. (Cambridge University, 1968).
  20. A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams,” J. Opt. Soc. Am. A 20, 1635–1643 (2003). [CrossRef]
  21. A. Ya. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, and M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002). [CrossRef]
  22. Yu. A. Anan’ev and A. Ya. Bekshaev, “Theory of intensity moments for arbitrary light beams,” Opt. Spectrosc. 76, 558–568 (1994).
  23. A. Ya. Bekshaev, “Improved theory for the polarization-dependent transverse shift of a paraxial light beam in free space,” Ukr. J. Phys. Opt. 12, 10–18 (2011). [CrossRef]
  24. A. Ya. Bekshaev and A. I. Karamoch, “Astigmatic telescopic transformation of a high-order optical vortex,” Opt. Commun. 281, 5687–5696 (2008). [CrossRef]
  25. M. V. Berry, “Optical currents,” J. Opt. A 11, 094001 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited