OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 821–826

Observation of a high grade of polarization of solitons generated in the process of pulse breakup in a twisted fiber

Ariel Flores-Rosas, Josue I. Peralta-Hernandez, Yazmin E. Bracamontes-Rodríguez, Balder A. Villagomez-Bernabe, Georgina Beltrán-Pérez, Olivier Pottiez, Baldemar Ibarra-Escamilla, Roberto Rojas-Laguna, and Evgeny A. Kuzin  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 821-826 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000821


View Full Text Article

Enhanced HTML    Acrobat PDF (752 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Common optical fibers are randomly birefringent, which results in random polarization of the supercontinuum (SC) generated in such fibers. Random polarization is undesirable for many applications of the SC. The formation of solitons from a pump pulse is one of the principal mechanisms of SC generation. Fiber twisting mitigates the random linear birefringence, which makes twisted fiber attractive for nonlinear applications. In this work we measured the polarization of solitons formed by the pulse breakup process. We found that a circularly polarized 1 ns pump pulse introduced to a twisted Corning SMF-28 fiber produces solitons with a high grade of circular polarization, while in a fiber without twist the polarization of solitons is random.

© 2014 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 24, 2013
Revised Manuscript: February 14, 2014
Manuscript Accepted: February 19, 2014
Published: March 18, 2014

Citation
Ariel Flores-Rosas, Josue I. Peralta-Hernandez, Yazmin E. Bracamontes-Rodríguez, Balder A. Villagomez-Bernabe, Georgina Beltrán-Pérez, Olivier Pottiez, Baldemar Ibarra-Escamilla, Roberto Rojas-Laguna, and Evgeny A. Kuzin, "Observation of a high grade of polarization of solitons generated in the process of pulse breakup in a twisted fiber," J. Opt. Soc. Am. B 31, 821-826 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-821


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Nowak, J. Kim, and M. N. Islam, “Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber,” Appl. Opt. 38, 7364–7369 (1999). [CrossRef]
  2. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Opt. Express 10, 1083–1098 (2002). [CrossRef]
  3. K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Initial steps of supercontinuum generation in photonic crystal fibers,” J. Opt. Soc. Am. B 20, 1887–1893 (2003). [CrossRef]
  4. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, “Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse,” J. Opt. Soc. Am. B 21, 1969–1980 (2004). [CrossRef]
  5. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber,” Opt. Lett. 26, 1356–1358 (2001). [CrossRef]
  6. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]
  7. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” Electron. Lett. 37, 558–560 (2001). [CrossRef]
  8. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002). [CrossRef]
  9. P. A. Champert, S. V. Popov, and J. R. Taylor, “Generation of multiwatt, broadband continua in holey fibers,” Opt. Lett. 27, 122–124 (2002). [CrossRef]
  10. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Continuous-wave, high-power, Raman continuum generation in holey fibers,” Opt. Lett. 28, 1353–1355 (2003). [CrossRef]
  11. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett. 29, 2163–2165 (2004). [CrossRef]
  12. A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,” Opt. Lett. 30, 61–63 (2005). [CrossRef]
  13. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  14. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987). [CrossRef]
  15. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6, 1149–1158 (1989). [CrossRef]
  16. A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 2567–2572 (2002). [CrossRef]
  17. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998). [CrossRef]
  18. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002). [CrossRef]
  19. J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Quantum Electron. 8, 651–659 (2002). [CrossRef]
  20. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003). [CrossRef]
  21. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fibre,” Appl. Phys. Lett. 82, 2197–2199 (2003). [CrossRef]
  22. C. Xiong and W. J. Wadsworth, “Polarized supercontinuum in birefringent photonic crystal fiber pumped at 1064  nm and application to tunable visible/UV generation,” Opt. Express 16, 2438–2445 (2008). [CrossRef]
  23. Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B 21, 249–257 (2004). [CrossRef]
  24. Z. Zhu and T. G. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12, 791–796 (2004). [CrossRef]
  25. H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20, 1113–1128 (2012). [CrossRef]
  26. T. Tanemura and K. Kikuchi, “Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol. 24, 4108–4119 (2006). [CrossRef]
  27. N. Korneev, E. A. Kuzin, B. A. Villagomez-Bernabe, O. Pottiez, B. Ibarra-Escamilla, A. González-García, and M. Durán-Sánchez, “Raman-induced polarization stabilization of vector solitons in circularly birefringent fibers,” Opt. Express 20, 24288–24294 (2012). [CrossRef]
  28. E. A. Kuzin, N. Korneev, J. W. Haus, and B. Ibarra-Escamilla, “Theory of nonlinear loop mirrors with twisted low-birefringence fiber,” J. Opt. Soc. Am. B 18, 919–925 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited