## Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity |

JOSA B, Vol. 31, Issue 5, pp. 1087-1095 (2014)

http://dx.doi.org/10.1364/JOSAB.31.001087

Enhanced HTML Acrobat PDF (1573 KB)

### Abstract

The interaction of a single-mode field with both a weak Kerr medium and a parametric nonlinearity in an intrinsically nonlinear optomechanical system is studied. The nonlinearities due to the optomechanical coupling and Kerr-down conversion lead to bistability and tristability in the mean intracavity photon number. Also, our work demonstrates that the lower bound of the resolved sideband regime and the minimum attainable phonon number can be less than those of a bare cavity by controlling the parametric nonlinearity and the phase of the driving field. Moreover, we find that in the system under consideration the degree of entanglement between the mechanical and optical modes is dependent on the two stability parameters of the system. For both cooling and entanglement, while parametric nonlinearity increases the optomechanical coupling, the weak Kerr nonlinearity is very useful for extending the domain of the stability region to the desired range in which the minimum effective temperature and maximal entanglement are attainable. Also, as shown in this paper, the present scheme allows us to have significant entanglement in the tristable regime for the lower and middle branches, which makes the current scheme distinct from the bare optomechanical system.

© 2014 Optical Society of America

**OCIS Codes**

(190.0190) Nonlinear optics : Nonlinear optics

(200.4880) Optics in computing : Optomechanics

(270.0270) Quantum optics : Quantum optics

**ToC Category:**

Instrumentation, Measurement, and Metrology

**History**

Original Manuscript: January 8, 2014

Revised Manuscript: March 17, 2014

Manuscript Accepted: March 18, 2014

Published: April 16, 2014

**Citation**

S. Shahidani, M. H. Naderi, M. Soltanolkotabi, and S. Barzanjeh, "Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity," J. Opt. Soc. Am. B **31**, 1087-1095 (2014)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1087

Sort: Year | Journal | Reset

### References

- V. Braginsky, S. E. Strigin, and S. P. Vyatchanin, “Analysis of parametric oscillatory instability in power recycled LIGO interferometer,” Phys. Lett. A 305, 111–124 (2002). [CrossRef]
- D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004). [CrossRef]
- A. D. O’ Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010). [CrossRef]
- J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011). [CrossRef]
- J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef]
- O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006). [CrossRef]
- S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bauerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006). [CrossRef]
- C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004). [CrossRef]
- S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009). [CrossRef]
- Z. R. Gong, H. Ian, Yu.-x. Liu, C. P. Sun, and F. Nori, “Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system,” Phys. Rev. A 80, 065801 (2009). [CrossRef]
- C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, and S. Reynaud, “Quantum-noise reduction using a cavity with a movable mirror,” Phys. Rev. A 49, 1337–1343 (1994). [CrossRef]
- S. Mancini and P. Tombesi, “Quantum noise reduction by radiation pressure,” Phys. Rev. A 49, 4055–4065 (1994). [CrossRef]
- P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063601 (2011). [CrossRef]
- A. Nunnenkamp, K. Borkje, and S. M. Girvin, “Single-photon optomechanics,” Phys. Rev. Lett. 107, 063602 (2011). [CrossRef]
- A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes, and H. Walther, “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51, 1550–1553 (1983). [CrossRef]
- A. Gozzini, F. Maccarone, F. Mango, I. Longo, and S. Barbarino, “Light-pressure bistability at microwave frequencies,” J. Opt. Soc. Am. B 2, 1841–1845 (1985). [CrossRef]
- R. Ghobadi, A. R. Bahrampour, and C. Simon, “Quantum optomechanics in the bistable regime,” Phys. Rev. A 84, 033846 (2011). [CrossRef]
- S. Huang and G. S. Agarwal, “Enhancement of cavity cooling of a micromechanical mirror using parametric interactions,” Phys. Rev. A 79, 013821 (2009). [CrossRef]
- A. Xuereb, M. Barbier, and M. Paternostro, “Multipartite optomechanical entanglement from competing nonlinearities,” Phys. Rev. A 86, 013809 (2012). [CrossRef]
- T. Kumar, A. Bhattacherjee, and M. Mohan, “Dynamics of a movable micromirror in a nonlinear optical cavity,” Phys. Rev. A 81, 013835 (2010). [CrossRef]
- B. Wielinga and G. J. Milburn, “Quantum tunneling in a Kerr medium with parametric pumping,” Phys. Rev. A 48, 2494–2496 (1993). [CrossRef]
- W. Leon’ski, “Fock states in a Kerr medium with parametric pumping,” Phys. Rev. A 54, 3369–3372 (1996). [CrossRef]
- T. Kaino and S. Tomaru, “Organic material for nonlinear optics,” Adv. Mater. 5, 172–178 (1993). [CrossRef]
- P. D. Townsend, G. L. Baker, J. L. Jackel, J. A. Shelburne, and S. Etemad, “Nonlinear optical properties of organic materials II,” Proc. SPIE 1147, 256 (1989). [CrossRef]
- J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring Resonators,” Opt. Express 19, 11415–11421 (2011). [CrossRef]
- C. K. Law, “Interaction between a moving mirror and radiation pressurer: a Hamiltonian formulation,” Phys. Rev. A 51, 2537–2541 (1995). [CrossRef]
- S. Mancini, V. I. Manko, and P. Tombesi, “Ponderomotive control of quantum macroscopic coherence,” Phys. Rev. A 55, 3042 (1997). [CrossRef]
- S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175–4186 (1997). [CrossRef]
- C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag, 1991).
- V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001). [CrossRef]
- L. Landau and E. Lifshitz, Statistical Physics (Pergamon, 1958).
- D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006). [CrossRef]
- D. Kleckner, W. Marshall, M. J. A. de Dood, K. N. Dinyari, B.-J. Pors, W. T. M. Irvine, and D. Bouwmeester, “High finesse opto-mechanical cavity with a movable thirty-micron-size mirror,” Phys. Rev. Lett. 96, 173901 (2006). [CrossRef]
- T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005). [CrossRef]
- I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, 1980).
- A. Hurwitz, Selected Papers on Mathematical Trends in Control Theory, R. Bellman and R. Kabala, eds. (Dover, 1964).
- F. Marquardt, J. G. Harris, and S. M. Girvin, “Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities,” Phys. Rev. Lett. 96, 103901 (2006). [CrossRef]
- C. Metzger, M. Ludwig, C. Neuenhahn, A. Ortlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Phys. Rev. Lett. 101, 133903 (2008). [CrossRef]
- C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008). [CrossRef]
- J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012). [CrossRef]
- D. Vitali, S. Gigan, A. Ferreira, H. R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007). [CrossRef]
- C. Genes, A. Mari, P. Tombesi, and D. Vitali, “Robust entanglement of a micromechanical resonator with output optical fields,” Phys. Rev. A 78, 032316 (2008). [CrossRef]
- A. Mari and J. Eisert, “Gently modulating optomechanical system,” Phys. Rev. Lett. 103, 213603 (2009). [CrossRef]
- F. Marquardt, J. P. Chen, A. A. Clerck, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007). [CrossRef]
- I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007). [CrossRef]
- M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J. Eisert, and M. Aspelmeyer, “Creating and probing multipartite macroscopic entanglement with light,” Phys. Rev. Lett. 99, 250401 (2007). [CrossRef]
- J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode splitting in cavity optomechanics,” Phys. Rev. Lett. 101, 263602 (2008). [CrossRef]
- C. Genes, A. Mari, D. Vitali, and P. Tombesi, “Quantum effects in optomechanical systems,” Adv. At. Mol. Opt. Phys. 57, 33–86 (2009). [CrossRef]
- G. Adesso, A. Serafini, and F. Illuminati, “Extremal entanglement and mixedness in continuous variable systems,” Phys. Rev. A 70, 022318 (2004). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.