OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1165–1173

Selectively addressing optically nonlinear nanocrystals by polarization-shaped ultrafast laser pulses

Yuri Paskover, Dan Xie, François O. Laforge, and Herschel Rabitz  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1165-1173 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A noncentrosymmetric nanocrystal can produce second-harmonic generation (SHG) and sum-frequency generation (SFG) upon interaction with a laser field. The SHG or SFG radiation depends on the orientation of the nanocrystal as well as the field polarization, which allows for modulating the second-order emission of an arbitrarily oriented nanocrystal by specially tailoring the field polarization. We theoretically study SHG and SFG signals produced by nanocrystals driven with broad-bandwidth laser pulses. Several simulations explore the influence of the field polarization and temporal pulse profile. The latter two factors are decoupled in their influence upon the SHG and SFG signals, and thus polarization and temporal shaping can be independently performed to modulate a nanocrystals’ second-order emission. We consider the possibility of enhancing (suppressing) the signal from one nanocrystal among others by choosing the appropriate polarization, thereby opening up the prospect of selectively addressing optically nonlinear nanocrystals.

© 2014 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(320.5540) Ultrafast optics : Pulse shaping
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: February 21, 2014
Manuscript Accepted: March 26, 2014
Published: April 24, 2014

Yuri Paskover, Dan Xie, François O. Laforge, and Herschel Rabitz, "Selectively addressing optically nonlinear nanocrystals by polarization-shaped ultrafast laser pulses," J. Opt. Soc. Am. B 31, 1165-1173 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for nonresonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008). [CrossRef]
  2. C.-L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express 18, 11917 (2010). [CrossRef]
  3. J. Teyssier, R. L. Dantec, C. Galez, Y. Mugnier, J. Bouillot, and J. Plenet, “Lithium iodate nanocrystals in laponite matrix for nonlinear optical applications,” Appl. Phys. Lett. 85, 710–711 (2004). [CrossRef]
  4. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, “KxRb1−xTiOPO4: a new nonlinear optical material,” J. Appl. Phys. 47, 4980–4985 (1976). [CrossRef]
  5. J.-T. Chen, W.-C. Lai, C.-H. Chen, Y.-Y. Yang, J.-K. Sheu, and L.-W. Lai, “Electroluminescence of ZnO nanocrystal in sputtered ZnO-SiO2 nanocomposite light-emitting devices,” Opt. Express 19, 11873–11879 (2011). [CrossRef]
  6. Y. Jiang, L. Sun, and M. C. Downer, “Second-harmonic spectroscopy of two-dimensional Si nanocrystal layers embedded in SiO2 films,” Appl. Phys. Lett. 81, 3034–3036 (2002). [CrossRef]
  7. J. Extermann, L. Bonacina, E. Cua, C. Kasparian, Y. Mugnier, T. Feurer, and J.-P. Wolf, “Nanodoublers as deep imaging markers for multi-photon microscopy,” Opt. Express 17, 15342 (2009). [CrossRef]
  8. C.-L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009). [CrossRef]
  9. R. Bäumner, L. Bonacina, J. Enderlein, J. Extermann, T. Fricke-Begemann, G. Marowsky, and J.-P. Wolf, “Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles,” Opt. Express 18, 23218–23225 (2010). [CrossRef]
  10. R. Grange, T. Lanvin, C.-L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express 2, 2532–2539 (2011). [CrossRef]
  11. S. Brasselet, V. Le Floch, F. Treussart, J.-F. Roch, J. Zyss, E. Botzung-Appert, and A. Ibanez, “In situ diagnostics of the crystalline nature of single organic nanocrystals by nonlinear microscopy,” Phys. Rev. Lett. 92, 207401 (2004). [CrossRef]
  12. L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3: nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007). [CrossRef]
  13. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]
  14. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001). [CrossRef]
  15. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, s133–s144 (2002). [CrossRef]
  16. B. Li, G. Turinici, V. Ramakrishna, and H. Rabitz, “Optimal dynamic discrimination of similar molecules through quantum learning control,” J. Phys. Chem. B 106, 8125–8131 (2002). [CrossRef]
  17. B. Li, H. Rabitz, and J. P. Wolf, “Optimal dynamic discrimination of similar quantum systems with time series data,” J. Chem. Phys. 122, 154103 (2005). [CrossRef]
  18. M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009). [CrossRef]
  19. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  20. S. Bhagavantam and D. Suryanarayana, “Crystal symmetry and physical properties: application of group theory,” Acta Crystallogr. 2, 21–26 (1949). [CrossRef]
  21. J. Roslund and H. Rabitz, “Experimental quantum control landscapes: inherent monotonicity and artificial structure,” Phys. Rev. A 80, 013408 (2009). [CrossRef]
  22. S. Yoon, S. Baik, M. G. Kim, and N. Shin, “Formation mechanisms of tetragonal barium titanate nanoparticles in AlkoxideHydroxide sol-precipitation synthesis,” J. Am. Ceram. Soc. 89, 1816–1821 (2006). [CrossRef]
  23. O. Shir, J. Roslund, Z. Leghtas, and H. Rabitz, “Quantum control experiments as a testbed for evolutionary multi-objective algorithms,” Genetic Program. Evolvable Mach. 13, 445–491 (2012).
  24. J. Roslund, O. Shir, T. Back, and H. Rabitz, “Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control,” Phys. Rev. A 80, 043415 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited