OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 994–999

Concentration of multi-photon entanglement with linear optics assisted by quantum nondemolition detection

Yan-Qiang Ji, Zhao Jin, Ai-Dong Zhu, Hong-Fu Wang, and Shou Zhang  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 994-999 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000994


View Full Text Article

Enhanced HTML    Acrobat PDF (351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The entanglement concentration protocols (ECPs) are presented for distilling the maximally entangled state from a known partially entangled n-photon Bell-class and W state, respectively, only resorting to the linear optical elements and quantum nondemolition detector. Different from the traditional parity check with a single photon as an ancilla, we use linear optical elements for changing the photon paths to realize the concentration. The total success probability of the concentration for n-photon entangled states is calculated. The present protocols only require a partially entangled state and do not need any single auxiliary particle. By iterating the ECP repeatedly, the maximal success probability can be increased. Meanwhile, the present protocols are more suitable for the photon system due to the simple operations.

© 2014 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(270.5570) Quantum optics : Quantum detectors
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 6, 2013
Revised Manuscript: February 19, 2014
Manuscript Accepted: March 14, 2014
Published: April 8, 2014

Citation
Yan-Qiang Ji, Zhao Jin, Ai-Dong Zhu, Hong-Fu Wang, and Shou Zhang, "Concentration of multi-photon entanglement with linear optics assisted by quantum nondemolition detection," J. Opt. Soc. Am. B 31, 994-999 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-994


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394–4400 (1998). [CrossRef]
  3. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
  4. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  5. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 557–559 (1992). [CrossRef]
  6. X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
  7. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  8. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
  9. F. L. Yan and T. Gao, “Quantum secret sharing between multiparty and multiparty without entanglement,” Phys. Rev. A 72, 012304 (2005). [CrossRef]
  10. B. Gu, L. L. Mu, L. G. Ding, C. Y. Zhang, and C. Q. Li, “Fault tolerant three-party quantum secret sharing against collective noise,” Opt. Commun. 283, 3099–3103 (2010). [CrossRef]
  11. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  12. X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006). [CrossRef]
  13. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  14. Z. X. Man, Z. J. Zhang, and Y. Li, “Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations,” Chin. Phys. Lett. 22, 18–21 (2005). [CrossRef]
  15. A. D. Zhu, Y. Xia, Q. B. Fan, and S. Zhang, “Secure direct communication based on secret transmitting order of particles,” Phys. Rev. A 73, 022338 (2006). [CrossRef]
  16. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
  17. N. Paunković, Y. Omar, S. Bose, and V. Vedral, “Entanglement concentration using quantum statistics,” Phys. Rev. Lett. 88, 187903 (2002). [CrossRef]
  18. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
  19. T. Yamamoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346 (2003). [CrossRef]
  20. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
  21. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901 (2003). [CrossRef]
  22. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
  23. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 0272–0281 (2010).
  24. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
  25. B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
  26. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
  27. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
  28. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon W states,” Eur. Phys. J. D 56, 271–275 (2010). [CrossRef]
  29. H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010). [CrossRef]
  30. L. L. Sun, H. F. Wang, S. Zhang, and K. H. Yeon, “Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 630–634 (2012). [CrossRef]
  31. Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 042302 (2012). [CrossRef]
  32. F. F. Du, T. Li, B. C. Ren, H. R. Wei, and F. G. Deng, “Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 1399–1405 (2012). [CrossRef]
  33. B. Si, S. L. Su, L. L. Sun, L. Y. Cheng, H. F. Wang, and S. Zhang, “Efficient three-step entanglement concentration for an arbitrary four-photon cluster state,” Chin. Phys. B 22, 030305 (2013). [CrossRef]
  34. S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, “The efficiencies of generating cluster states with weak nonlinearities,” New J. Phys. 9, 193 (2007). [CrossRef]
  35. C. R. Zhao and L. Ye, “Robust scheme for the preparation of symmetric Dicke states with coherence state via cross-Kerr nonlinearity,” Opt. Commun. 284, 541–544 (2011). [CrossRef]
  36. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature 400, 239–242 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited