OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: A51–A55

Experimental generation of an optical field with arbitrary spatial coherence properties

Brandon Rodenburg, Mohammad Mirhosseini, Omar S. Magaña-Loaiza, and Robert W. Boyd  »View Author Affiliations


JOSA B, Vol. 31, Issue 6, pp. A51-A55 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000A51


View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an experimental technique for generating a quasi-monochromatic field with any arbitrary spatial coherence properties that can be described by the cross-spectral density function, W(r1,r2). This is done by using a dynamic binary amplitude grating generated by a digital micromirror device to rapidly alternate between a set of coherent fields, creating an incoherent mix of modes that represent the coherent mode decomposition of the desired W(r1,r2). This method was then demonstrated experimentally by interfering two plane waves and then spatially varying the coherence between them. It is then shown that this creates an interference pattern between the two beams whose fringe visibility varies spatially in an arbitrary and prescribed way.

© 2014 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.1640) Coherence and statistical optics : Coherence
(030.4070) Coherence and statistical optics : Modes
(050.1970) Diffraction and gratings : Diffractive optics
(090.1760) Holography : Computer holography
(070.6120) Fourier optics and signal processing : Spatial light modulators

History
Original Manuscript: January 8, 2014
Revised Manuscript: April 25, 2014
Manuscript Accepted: May 8, 2014
Published: May 23, 2014

Citation
Brandon Rodenburg, Mohammad Mirhosseini, Omar S. Magaña-Loaiza, and Robert W. Boyd, "Experimental generation of an optical field with arbitrary spatial coherence properties," J. Opt. Soc. Am. B 31, A51-A55 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-6-A51


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Wilner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012). [CrossRef]
  2. B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. OSullivan, M. Mirhosseini, D. J. Robertson, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on states of light carrying orbital angular momentum,” Opt. Lett. 37, 3735–3737 (2012). [CrossRef]
  3. M. Mirhosseini, B. Rodenburg, M. Malik, and R. W. Boyd, “Free-space communication through turbulence: a comparison of plane-wave and orbital-angular-momentum encodings,” J. Mod. Opt. 61, 43–48 (2014). [CrossRef]
  4. R. W. Boyd, B. Rodenburg, M. Mirhosseini, and S. M. Barnett, “Influence of atmospheric turbulence on the propagation of quantum states of light using plane-wave encoding,” Opt. Express 19, 18310–18317 (2011). [CrossRef]
  5. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef]
  6. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7, 677–680 (2011). [CrossRef]
  7. R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011). [CrossRef]
  8. M. Malik, M. N. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20, 13195–13200 (2012). [CrossRef]
  9. P. S. Considine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am. 56, 1001–1007 (1966). [CrossRef]
  10. B. Lin, “Partially coherent imaging in two dimensions and the theoretical limits of projection printing in microfabrication,” IEEE Trans. Electron Devices 27, 931–938 (1980). [CrossRef]
  11. J. Dainty, “Some statistical properties of random speckle patterns in coherent and partially coherent illumination,” Opt. Acta 17, 761–772 (1970). [CrossRef]
  12. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  13. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19, 1592–1598 (2002). [CrossRef]
  14. H. Lajunen and T. Saastamoinen, “Propagation characteristics of partially coherent beams with spatially varying correlations,” Opt. Lett. 36, 4104–4106 (2011). [CrossRef]
  15. Z. Chen, S. M. Sears, H. Martin, D. N. Christodoulides, and M. Segev, “Clustering of solitons in weakly correlated wavefronts,” Proc. Natl. Acad. Sci. USA 99, 5223–5227 (2002). [CrossRef]
  16. L. Waller, G. Situ, and J. W. Fleischer, “Phase-space measurement and coherence synthesis of optical beams,” Nat. Photonics 6, 474–479 (2012). [CrossRef]
  17. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011). [CrossRef]
  18. J. S. Lundeen and C. Bamber, “Procedure for direct measurement of general quantum states using weak measurement,” Phys. Rev. Lett. 108, 070402 (2012). [CrossRef]
  19. C. Rickenstorff, E. Flores, M. Olvera-Santamaría, and A. Ostrovsky, “Modulation of coherence and polarization using nematic 90 degree-twist liquid-crystal spatial light modulators,” Rev. Mex. Fis. 58, 270–273 (2012).
  20. E. Baleine and A. Dogariu, “Variable-coherence tomography for inverse scattering problems,” J. Opt. Soc. Am. A 21, 1917–1923 (2004). [CrossRef]
  21. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  22. E. Wolf, “New spectral representation of random sources and of the partially coherent fields that they generate,” Opt. Commun. 38, 3–6 (1981). [CrossRef]
  23. A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982). [CrossRef]
  24. M. Mirhosseini, O. S. Magaña-Loaiza, C. Chen, B. Rodenburg, M. Malik, and R. W. Boyd, “Rapid generation of light beams carrying orbital angular momentum,” Opt. Express 21, 30196–30203 (2013). [CrossRef]
  25. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003). [CrossRef]
  26. B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13, 160–168 (1969). [CrossRef]
  27. W.-H. Lee, “High efficiency multiple beam gratings,” Appl. Opt. 18, 2152–2158 (1979). [CrossRef]
  28. P. Zhang, Z. Zhang, J. Prakash, S. Huang, D. Hernandez, M. Salazar, D. N. Christodoulides, and Z. Chen, “Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques,” Opt. Lett. 36, 1491–1493 (2011). [CrossRef]
  29. E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd, “Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram,” Opt. Lett. 38, 3546–3549 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited