OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1746–1752

Refractive index sensing utilizing parallel tapered nano-slotted photonic crystal nano-beam cavities

Jian Zhou, Huiping Tian, Daquan Yang, Qi Liu, Lijun Huang, and Yuefeng Ji  »View Author Affiliations


JOSA B, Vol. 31, Issue 8, pp. 1746-1752 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001746


View Full Text Article

Enhanced HTML    Acrobat PDF (1035 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate refractive index sensing using parallel tapered nano-slotted photonic-crystal nano-beam cavities with three-dimensional (3D) finite-difference time-domain (3D-FDTD) simulation. The electric field of the cavity mode is strongly concentrated in the slot region leading to a large light–matter overlap, which is expected to add a significant contribution to sensitivity, and thus we present high refractive-index sensitivity of more than 600nm/refractive index units. Additionally, the quality (Q)-factor in the proposed design is theoretically investigated, and through tapering the diameter of the pores outside the Bragg mirrors in nano-beam cavities and the width of the adjacent nano-slots, an optimal Q-factor of 11770 is obtained. A high figure of merit (FOM=4637) of the designed model has been obtained. We anticipate that this geometry is potentially an ideal platform for refractive-index based bio-sensing.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: March 31, 2014
Revised Manuscript: May 28, 2014
Manuscript Accepted: June 5, 2014
Published: July 3, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Jian Zhou, Huiping Tian, Daquan Yang, Qi Liu, Lijun Huang, and Yuefeng Ji, "Refractive index sensing utilizing parallel tapered nano-slotted photonic crystal nano-beam cavities," J. Opt. Soc. Am. B 31, 1746-1752 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-8-1746


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef]
  2. W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37, 1208–1210 (2012). [CrossRef]
  3. C. A. Barrios, M. Bauls, V. G. Pedro, K. B. Gylfason, B. Snchez, A. Griol, A. Maquieira, H. Sohlstrm, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708–710 (2008). [CrossRef]
  4. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2, 1544–1559 (2010). [CrossRef]
  5. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach–Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50, 5503–5507 (2011). [CrossRef]
  6. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. van Hovell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7, 394–397 (2007). [CrossRef]
  7. K. Mileńko, D. J. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37, 1373–1375 (2012). [CrossRef]
  8. D. Yang, H. Tian, N. Wu, Y. Yang, and Y. Ji, “Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity,” Sens. Actuators A 199, 30–36 (2013). [CrossRef]
  9. J. O. Grepstad, P. Kaspar, O. Solgaard, I. R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express 20, 7954–7965 (2012). [CrossRef]
  10. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram dispersion L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 12, 26486–26498 (2012).
  11. V. Trivino, N. Rossbach, G. Dharanipathy, U. Levrat, J. Castiglia, A. Carlin, J. F. Atlasov, K. A. Butte, R. Houdre, and R. Grandjean, “High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate,” Appl. Phys. Lett. 100, 071103 (2012). [CrossRef]
  12. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 3604–3609 (2012). [CrossRef]
  13. T. Sar, J. Hagemeier, W. Pfaff, E. Heeres, S. Thon, H. Kim, P. Petroff, O. Tjerk, D. Bouwmeester, and R. Hanson, “Effect of a nanoparticle on the optical properties of a photonic crystal cavity: theory and experiment,” J. Opt. Soc. Am. B 29, 698–703 (2012). [CrossRef]
  14. B. T. Tung, D. V. Dao, T. Ikeda, Y. Kanamori, K. Hane, and S. Sugiyama, “Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity,” Opt. Express 19, 8821–8829 (2011). [CrossRef]
  15. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010). [CrossRef]
  16. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011). [CrossRef]
  17. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef]
  18. C. Caucheteur, Y. Shevchenko, L. Shao, M. Wuilpart, and J. Albert, “High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement,” Opt. Express 19, 1656–1664 (2011). [CrossRef]
  19. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt. 46, 5456–5460 (2007). [CrossRef]
  20. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15, 14376–14381 (2007). [CrossRef]
  21. D. Dai and S. He, “Highly sensitive sensor based on an ultra-high-Q Mach–Zehnder interferometer-coupled microring,” J. Opt. Soc. Am. B 26, 511–516 (2009). [CrossRef]
  22. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express 18, 22702–22714 (2010). [CrossRef]
  23. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008). [CrossRef]
  24. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, “Refractive index sensor based on a 1D photonic crystal in a microfluidic channel,” Sensors 10, 2348–2358 (2010). [CrossRef]
  25. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011). [CrossRef]
  26. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, T. Sindy, K. Y. Tang, R. Illic, and M. Loncar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” in Quantum Electronics and Laser Science Conference (QELS), (May, 2011).
  27. K. B. Gylfason, C. F. Carlborg, A. K. Zmierczak, F. Dortu, H. Sohlstrom, L. Vivien, C. A. Barrios, W. Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18, 3226–3237 (2010). [CrossRef]
  28. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010). [CrossRef]
  29. K. H. Yoon and M. L. Shuler, “Design optimization of nano-grating surface plasmon resonance sensors,” Opt. Express 14, 4842–4849 (2006). [CrossRef]
  30. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Optimization of photonic crystal cavity for chemical sensing,” Opt. Express 16, 11709–11717 (2008). [CrossRef]
  31. M. G. Scullion, A. di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011). [CrossRef]
  32. A. di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009). [CrossRef]
  33. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett. 97, 151105 (2010). [CrossRef]
  34. I. Mukherjee, G. Hajisalem, and R. Gordon, “One-step integration of metal nanoparticle in photonic crystal nanobeam cavity,” Opt. Express 19, 22462–22469 (2011). [CrossRef]
  35. Z. M. Meng, Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, “Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching,” Appl. Phys. Lett. 426, 1–10 (2013).
  36. M. Geh, R. Gibson, J. Hendrickson, A. Homyk, A. Säynätjoki, T. Alasaarela, and Y. H. Lee, “Effect of atomic layer deposition on the quality factor of silicon nanobeam cavities,” J. Opt. Soc. Am. B 29, 55–59 (2012). [CrossRef]
  37. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. G. Roh, and M. Notomi, “Ultrahigh-Q one dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010). [CrossRef]
  38. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004). [CrossRef]
  39. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  40. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005). [CrossRef]
  41. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Ultracompact guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef]
  42. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008). [CrossRef]
  43. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).
  44. W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide,” Opt. Lett. 36, 984–986 (2011). [CrossRef]
  45. W. C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, “Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water,”Appl. Phys. Lett. 98, 023304 (2011). [CrossRef]
  46. Z. Han, A. Y. Elezzabi, and V. Van, “Wideband Y-splitter and aperture-assisted coupler based on sub-diffraction confined plasmonic slot waveguides,” Appl. Phys. Lett. 96, 131106 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited