OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1761–1770

Optics InfoBase > JOSA B > Page 1761

Synthesis and optical properties of multifunctional CdS nanostructured dielectric nanocomposites

Chirantan Dey, Atiar Rahaman Molla, Madhumita Goswami, Govind Prasad Kothiyal, and Basudeb Karmakar  »View Author Affiliations


JOSA B, Vol. 31, Issue 8, pp. 1761-1770 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001761


View Full Text Article

Enhanced HTML    Acrobat PDF (1263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Highly luminescent CdS nanocrystals (NCs) grown in a dielectric (borosilicate glass) matrix have been synthesized by the melt quenching technique. NC sizes are varied by controlling the post thermal treatment durations in the glass matrix and their optical properties have been investigated. The sizes of the CdS NCs calculated from the transmission electron microscopic (TEM) images are found to alter in the range of 4–40 nm. Field emission scanning electron microscopic (FESEM) images reveal the presence of 30–100 nm CdS nanostructures. Photoluminescence (PL) of CdS–glass nanocomposites reveals a sharp green emission peak (508nm) due to direct electron–hole recombination along with a broad trap-related emission band. The sharpness, tuning ability of the absorption spectra, and PL covering the visible spectral range are the highest reported to date for any compound semiconductor–dielectric nanocomposite and one single nanocomposite, synthesized by this method, advocating for their potential utilization as functional materials in the fabrication of multiple devices such as luminescent solar concentrators (LSCs), optical color filters, and solid-state lasers.

© 2014 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.3380) Materials : Laser materials
(160.4670) Materials : Optical materials
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: April 9, 2014
Revised Manuscript: May 22, 2014
Manuscript Accepted: June 1, 2014
Published: July 3, 2014

Citation
Chirantan Dey, Atiar Rahaman Molla, Madhumita Goswami, Govind Prasad Kothiyal, and Basudeb Karmakar, "Synthesis and optical properties of multifunctional CdS nanostructured dielectric nanocomposites," J. Opt. Soc. Am. B 31, 1761-1770 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-8-1761


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes,” J. Am. Chem. Soc. 134, 3804–3809 (2012). [CrossRef]
  2. V. S. Dneprovskii, V. I. Klimov, D. K. Okoroko, and Y. V. Vandyshev, “Ultrafast light induced transmission changes and laser emission of semiconductor quantum dots,” Phys. Status Solidi B 173, 405–406 (1992). [CrossRef]
  3. M. J. Bowers, J. R. McBride, and S. J. Rosenthal, “White-light emission from magic-sized cadmium selenide nanocrystals,” J. Am. Chem. Soc. 127, 15378–15379 (2005). [CrossRef]
  4. L. Zhao, L. Hu, and X. Fang, “Growth and device application of CdSe nanostructures,” Adv. Funct. Mater. 22, 1551–1566 (2012). [CrossRef]
  5. M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000). [CrossRef]
  6. U. Woggon, O. Wind, V. Sperling, M. Portune, and C. Klingshirn, “Nonlinear and electro-optic properties of II–VI semiconductor nanocrystals and polymer and glass matrices,” Surf. Rev. Lett. 3, 1089–1094 (1996). [CrossRef]
  7. K. D. Patel, G. K. Solanki, J. R. Gandhi, and S. G. Patel, “Structural and optical characterization of ZnSe crystals grown by physical vapor transport technique,” Chalcogenide Lett. 6, 45–50 (2009).
  8. K. C. Rustagi and C. Flytzanis, “Optical nonlinearities in semiconductor-doped glasses,” Opt. Lett. 9, 344–346 (1984). [CrossRef]
  9. G. D. Stucky and J. E. Mac Doudall, “Quantum confinement and host/guest chemistry: probing a new dimension,” Science 247, 669–678 (1990). [CrossRef]
  10. N. F. Borrelli, D. W. Hall, H. J. Holland, and D. W. Smith, “Quantum confinement effects of semiconducting microcrystallites in glass,” J. Appl. Phys. 61, 5399–5409 (1987). [CrossRef]
  11. A. P. Alivisatos, T. D. Harris, L. E. Brus, and A. Jayaraman, “Resonance Raman scattering and optical absorption studies of CdSe microclusters at high pressure,” J. Chem. Phys. 89, 5979–5982 (1988). [CrossRef]
  12. S. V. Alyshev, A. O. Zabezhaylov, R. A. Mironov, V. I. Kozlovsky, and E. M. Dianov, “Formation of three-dimensional ZnSe-based semiconductor nanostructures,” Semiconductors 44, 72–75 (2010). [CrossRef]
  13. M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, “Optical phonon confinement in zinc oxide nanoparticles,” J. Appl. Phys. 87, 2445–2448 (2000). [CrossRef]
  14. X. Fang, S. Xiong, T. Zhai, Y. Bando, M. Liao, U. K. Gautam, Y. Koide, X. Zhang, Y. Qian, and D. Golberg, “High-performance blue/ultraviolet-light-sensitive ZnSe-nanobelt photodetectors,” Adv. Mater. 21, 5016–5021 (2009). [CrossRef]
  15. X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wua, Y. Bando, and D. Golberg, “ZnS nanostructures: from synthesis to applications,” Prog. Mater. Sci. 56, 175–287 (2011). [CrossRef]
  16. S. Chen, M.-L. Zheng, X.-Z. Dong, Z.-S. Zhao, and X.-M. Duan, “Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pump–probe technique,” J. Opt. Soc. Am. B 30, 3117–3122 (2013). [CrossRef]
  17. H. Yukselici, P. D. Persans, and T. M. Hayes, “Optical studies of the growth of Cd1-xZnxS nanocrystals in borosilicate glass,” Phys. Rev. B 52, 11763–11772 (1995). [CrossRef]
  18. S. K. Apte, B. B. Kale, R. S. Sonawane, S. D. Naik, S. S. Bodhale, and B. K. Das, “Homogeneous growth of CdS/CdSSe nanoparticles in glass matrix,” Mater. Lett. 60, 499–503 (2006). [CrossRef]
  19. P. Mukherjee, “Transmission electron microscopy (TEM) of silicate glasses containing CdSxSe1−x,” J. Mater. Sci. Lett. 20, 605–609 (2001). [CrossRef]
  20. H. Okamoto, J. Matsuoka, H. Nasu, K. Kamiya, and H. Tanaka, “Effect of cadmium to sulfur ratio on the photoluminescence of CdS doped glasses,” J. Appl. Phys. 75, 2251–2256 (1994). [CrossRef]
  21. K. K. Nanda, S. N. Sarangi, and S. N. Sahu, “Visible light emission from CdS nanocrystals,” J. Phys. D 32, 2306–2310 (1999). [CrossRef]
  22. L. Banyai and S. W. Koch, Semiconductor Quantum Dots (World Scientific, 2003).
  23. S. K. Gayen, M. Brito, B. B. Das, G. Comanescu, X. C. Liang, M. Alrubaiee, R. R. Alfano, C. Gonzalez, A. H. Byro, D. L. V. Bauer, and V. Balogh-Nair, “Synthesis and optical spectroscopy of a hybrid cadmium sulfide–dendrimer nanocomposite,” J. Opt. Soc. Am. B 24, 3064–3071 (2007). [CrossRef]
  24. S. Han, L. Hu, N. Gao, A. A. Al-Ghamdi, and X. Fang, “Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity,” Adv. Funct. Mater., doi: 10.1002/adfm.201400012 (2014). [CrossRef]
  25. H. Yukselici and P. D. Persans, “High temperature optical properties of CdS crystals in borosilicate glass,” J. Non-Cryst. Solids 203, 206–210 (1996). [CrossRef]
  26. K. Senthilkumar, T. Kalaivani, S. Kanagesan, V. Balasubramanian, and J. Balakrishnan, “Wurtzite ZnSe quantum dots: synthesis, characterization and PL properties,” J. Mater. Sci Mater. Electron. 24, 692–696 (2013).
  27. D. Battaglia, J. J. Li, Y. Wang, and X. Peng, “Colloidal two-dimensional systems: CdSe quantum shells and wells,” Angew. Chem., Int. Ed. 42, 5035–5039 (2003). [CrossRef]
  28. W. W. Yu and X. Peng, “Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem., Int. Ed. 41, 2368–2371 (2002).
  29. G. Jose, G. Jose, V. Thomas, C. Joseph, M. A. Ittyachen, and N. V. Unnikrishnan, “Optical characterization of Eu3+ ions in CdSe nanocrystal containing silica glass,” J. Fluoresc. 14, 733–738 (2004). [CrossRef]
  30. S. H. Risbud, “Nucleation and coalescence phenomena in the transformation of semiconductor-doped glasses,” Thermochim. Acta 280–281, 319–332 (1996). [CrossRef]
  31. V. C. S. Reynoso, A. M. de Paula, R. F. Cuevas, J. A. M. Neto, O. L. Alves, C. L. Cesar, and L. C. Barbosa, “PbTe quantum dot doped glasses with absorption edge in the 1.5  pm wavelength region,” Electron. Lett. 31, 1013–1015 (1995). [CrossRef]
  32. S. Wageh, A. S. Eid, S. El-Rabaie, and A. A. Higazy, “CdSe nanocrystals in novel phosphate glass matrix,” Physica E 40, 3049–3054 (2008). [CrossRef]
  33. K. Rajeshwar, N. R. de Tacconi, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater. 13, 2765–2782 (2001). [CrossRef]
  34. J. Z. Zhang, Optical Properties and Spectroscopy of Nanomaterials (World Scientific, 2009).
  35. K. E. Andersen, C. Y. Fong, and W. E. Pickett, “Quantum confinement in CdSe nanocrystallites,” J. Non-Cryst. Solids 299–302, 1105–1110 (2002). [CrossRef]
  36. N. S. Pesika, K. J. Stebe, and P. C. Searson, “Relationship between absorbance spectra and particle size distributions for quantum-sized nanocrystals,” J. Phys. Chem. B 107, 10412–10415 (2003). [CrossRef]
  37. M. S. Hybertsen, “Absorption and emission of light in nanoscale silicon structures,” Phys. Rev. Lett. 72, 1514–1517 (1994). [CrossRef]
  38. L. E. Brus, “Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403–4409 (1984). [CrossRef]
  39. Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape,” Phys. Rev. B 38, 9797–9805 (1988). [CrossRef]
  40. Z. R. Khan, M. Zulfequar, and M. S. Khan, “Chemical synthesis of CdS nanoparticles and their optical and dielectric studies,” J. Mater. Sci. 46, 5412–5416 (2011). [CrossRef]
  41. C.-L. Weng, I.-C. Chen, and Y.-C. Tsai, “Electron–acoustic-phonon interaction in core/shell nanocrystals and in quantum-dot quantum wells,” Phys. Rev. B 76, 195313 (2007). [CrossRef]
  42. H. Liu, Q. Liu, and X. Zhao, “Crystal growth and optical properties of CdS-doped lead silicate glass,” Mater. Charact. 58, 96–100 (2007). [CrossRef]
  43. X.-D. Zhou and W. Huebner, “Size-induced lattice relaxation in CeO2 nanoparticles,” Appl. Phys. Lett. 79, 3512–3514 (2001). [CrossRef]
  44. F. Zhang, S.-W. Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson, and I. P. Herman, “Cerium oxide nanoparticles: size-selective formation and structure analysis,” Appl. Phys. Lett. 80, 127–129 (2002). [CrossRef]
  45. H. Mao, J. Chen, J. Wang, Z. Li, N. Dai, and Z. Zhu, “Photoluminescence investigation of CdSe quantum dots and the surface state effect,” Physica E 27, 124–128 (2005). [CrossRef]
  46. C. Dey, A. R. Molla, A. Tarafder, M. K. Mishra, G. De, M. Goswami, G. P. Kothiyal, and B. Karmakar, “Single-step in-situ synthesis and optical properties of ZnSe nanostructured dielectric nanocomposites,” J. Appl. Phys. 115, 134309 (2014). [CrossRef]
  47. A. M. Kapitonov, A. P. Stupak, S. V. Gaponenko, E. P. Petrov, A. L. Rogach, and A. Eychmuller, “Luminescence properties of thiol-stabilized CdTe nanocrystals,” J. Phys. Chem. B 103, 10109–10113 (1999). [CrossRef]
  48. E. F. Schubert, Light-Emitting Diodes (Cambridge, 2003).
  49. T. Vossmeyer, L. Katsikas, M. Gienig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmiiller, and H. Weller, “CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift,” J. Phys. Chem. 98, 7665–7673 (1994). [CrossRef]
  50. M. K. Mishra, A. Mandal, J. Saha, and G. De, “CdS nanoparticles incorporated onion-like mesoporous silica films: ageing-induced large Stokes shifted intense PL emission,” Opt. Mater. 35, 2604–2612 (2013). [CrossRef]
  51. K. Barnham, J. L. Marques, J. Hassard, and P. O’Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett. 76, 1197–1199 (2000). [CrossRef]
  52. S. J. Gallagher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: device optimization using spectroscopic techniques,” Sol. Energy 81, 540–547 (2007). [CrossRef]
  53. S. M. Reda, “Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators,” Acta Mater. 56, 259–264 (2008). [CrossRef]
  54. W. Vogel, Glass Chemistry (Springer-Verlag, 1994).
  55. M. Fox, Optical Properties of Solids (Oxford, 2001).
  56. M. Kazes, D. Y. Lewis, Y. Ebenstein, T. Mokari, and U. Banin, “Lasing from semiconductor quantum rods in a cylindrical microcavity,” Adv. Mater. 14, 317–321 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited