OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1845–1852

Optics InfoBase > JOSA B > Page 1845

Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices

Artur Barasiński, Wiesław Leoński, and Tomasz Sowiński  »View Author Affiliations


JOSA B, Vol. 31, Issue 8, pp. 1845-1852 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001845


View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We will discuss a model with ultracold atoms confined in optical superlattices. In particular, we will study the ground-state properties of two spin-1 bosons trapped in a double-well potential. Depending on the external magnetic field and biquadratic interactions, different phases of magnetic order are realized. Applying von Neumann entropy and the number of relevant orbitals, we will quantify the bipartite entanglement between particles. Changing the values of the parameters determining the superlattices, we can switch the system between differently entangled states.

© 2014 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: April 1, 2014
Revised Manuscript: May 29, 2014
Manuscript Accepted: June 8, 2014
Published: July 15, 2014

Citation
Artur Barasiński, Wiesław Leoński, and Tomasz Sowiński, "Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices," J. Opt. Soc. Am. B 31, 1845-1852 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-8-1845


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404, 247–255 (2000). [CrossRef]
  2. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998). [CrossRef]
  3. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eible, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  4. A. Miranowicz, “Optical-state truncation and teleportation of qudits by conditional eight-port interferometry,” J. Opt. B 7, 142–150 (2005). [CrossRef]
  5. S. K. Ozdemir, K. Bartkiewicz, Y. X. Liu, and A. Miranowicz, “Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit,” Phys. Rev. A 76, 042325 (2007). [CrossRef]
  6. S. K. Goyal and T. Konrad, “Teleporting photonic qudits using multimode quantum scissors,” Sci. Rep. 3, 3548 (2013). [CrossRef]
  7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  8. K. Bartkiewicz, K. Lemr, A. Cernoch, J. Soubusta, and A. Miranowicz, “Experimental eavesdropping based on optimal quantum cloning,” Phys. Rev. Lett. 110, 173601 (2013). [CrossRef]
  9. G. C. Levine, “Entanglement entropy in a boundary impurity model,” Phys. Rev. Lett. 93, 266402 (2004). [CrossRef]
  10. A. Kitaev and J. Preskill, “Topological entanglement entropy,” Phys. Rev. Lett. 96, 110404 (2006). [CrossRef]
  11. M. Bartkowiak, A. Miranowicz, X. Wang, Y. X. Liu, W. Leoński, and F. Nori, “Sudden vanishing and reappearance of nonclassical effects: general occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses,” Phys. Rev. A 83, 053814 (2011). [CrossRef]
  12. S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith, “Entangled quantum state of magnetic dipoles,” Nature 425, 48–51 (2003). [CrossRef]
  13. A. Osterloh, L. Amico, G. Falci, and R. Fazio, “Scaling of entanglement close to a quantum phase transition,” Nature 416, 608–610 (2002). [CrossRef]
  14. T. J. Osborne and M. A. Nielsen, “Entanglement in a simple quantum phase transition,” Phys. Rev. A 66, 032110 (2002). [CrossRef]
  15. L. Amico, R. Fazio, A. Osterloh, and V. Vedral, “Entanglement in many-body systems,” Rev. Mod. Phys. 80, 517–576 (2008). [CrossRef]
  16. X. Peng, J. Du, and D. Suter, “Quantum phase transition of ground-state entanglement in a Heisenberg spin chain simulated in an NMR quantum computer,” Phys. Rev. A 71, 012307 (2005). [CrossRef]
  17. J. Zhang, X. Peng, N. Rajendran, and D. Suter, “Detection of quantum critical points by a probe qubit,” Phys. Rev. Lett. 100, 100501 (2008). [CrossRef]
  18. M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University, 2012).
  19. R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nat. Phys. 8, 277–284 (2012). [CrossRef]
  20. I. Bloch, J. Dalibard, and S. Nascimbene, “Quantum simulations with ultracold quantum gases,” Nat. Phys. 8, 267–276 (2012). [CrossRef]
  21. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998). [CrossRef]
  22. M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39–44 (2002). [CrossRef]
  23. I. Bloch, J. Dalibard, and W. Zwerger, “Many-body physics with ultracold gases,” Rev. Mod. Phys. 80, 885–964 (2008). [CrossRef]
  24. C. Hung, X. Zhang, N. Gemelke, and C. Chin, “Observation of scale invariance and universality in two-dimensional Bose gases,” Nature 470, 236–239 (2011). [CrossRef]
  25. G. M. Nikolopoulos, D. Petrosyan, and P. Lambropoulos, “Coherent electron wavepacket propagation and entanglement in array of coupled quantum dots,” Europhys. Lett. 65, 297–303 (2004). [CrossRef]
  26. M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, “Perfect state transfer in quantum spin networks,” Phys. Rev. Lett. 92, 187902 (2004). [CrossRef]
  27. L.-A. Wu, A. Miranowicz, X. B. Wang, Y. X. Liu, and F. Nori, “Perfect function transfer and interference effects in interacting boson lattices,” Phys. Rev. A 80, 012332 (2009). [CrossRef]
  28. C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319–324 (2011). [CrossRef]
  29. J. Pietraszewicz, T. Sowiński, M. Brewczyk, M. Lewenstein, and M. Gajda, “Spin dynamics of two bosons in an optical lattice site: a role of anharmonicity and anisotropy of the trapping potential,” Phys. Rev. A 88, 013608 (2013). [CrossRef]
  30. R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467–488 (1982). [CrossRef]
  31. P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch, and M. Lewenstein, “Can one trust quantum simulators?” Rep. Prog. Phys. 75, 082401 (2012). [CrossRef]
  32. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, “Cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 81, 3108–3111 (1998). [CrossRef]
  33. O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, “Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices,” Phys. Rev. Lett. 95, 030405 (2005). [CrossRef]
  34. V. W. Scarola and S. Das Sarma, “Quantum phases of the extended Bose–Hubbard Hamiltonian: possibility of a supersolid state of cold atoms in optical lattices,” Phys. Rev. Lett. 95, 033003 (2005). [CrossRef]
  35. F. Pinheiro, J.-P. Martikainen, and J. Larson, “Confined p-band Bose–Einstein condensates,” Phys. Rev. A 85, 033638 (2012). [CrossRef]
  36. T. Sowiński, M. Łącki, O. Dutta, J. Pietraszewicz, P. Sierant, M. Gajda, J. Zakrzewski, and M. Lewenstein, “Tunneling-induced restoration of the degeneracy and the time-reversal symmetry breaking in optical lattices,” Phys. Rev. Lett. 111, 215302 (2013). [CrossRef]
  37. T. Sowiński, “Creation on demand of higher orbital states in a vibrating optical lattice,” Phys. Rev. Lett. 108, 165301 (2012). [CrossRef]
  38. H. Katsura and H. Tasaki, “Ground states of the spin-1 Bose–Hubbard model,” Phys. Rev. Lett. 110, 130405 (2013).
  39. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-Verlag, 1994).
  40. J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, “Quantum simulation of antiferromagnetic spin chains in an optical lattice,” Nature 472, 307–312 (2011). [CrossRef]
  41. P. W. Anderson, “New approach to the theory of superexchange interactions,” Phys. Rev. 115, 2–13 (1959). [CrossRef]
  42. A. Imambekov, M. Lukin, and E. Demler, “Spin-exchange interactions of spin-one bosons in optical lattices: singlet, nematic, and dimerized phases,” Phys. Rev. A 68, 063602 (2003). [CrossRef]
  43. S.-K. Yip, “Dimer state of spin-1 bosons in an optical lattice,” Phys. Rev. Lett. 90, 250402 (2003). [CrossRef]
  44. C. Wu, “Hidden symmetry and quantum phases in spin-3/2 cold atomic systems,” Mod. Phys. Lett. B 20, 1707–1738 (2006). [CrossRef]
  45. K. Eckert, L. Zawitkowski, M. J. Leskinen, A. Sanpera, and M. Lewenstein, “Ultracold atomic Bose and Fermi spinor gases in optical lattices,” New J. Phys. 9, 133 (2007). [CrossRef]
  46. M. Hermele, V. Gurarie, and A. M. Rey, “Mott insulators of ultracold fermionic alkaline earth atoms: underconstrained magnetism and chiral spin liquid,” Phys. Rev. Lett. 103, 135301 (2009). [CrossRef]
  47. J. J. Garcia-Ripoll, M. A. Martin-Delgado, and J. I. Cirac, “Implementation of spin Hamiltonians in optical lattices,” Phys. Rev. Lett. 93, 250405 (2004). [CrossRef]
  48. A. Drzewiński and J. M. J. van Leeuwen, “Renormalization of the Ising model in a transverse field,” Phys. Rev. B 49, 403–408 (1994). [CrossRef]
  49. A. Drzewiński and R. Dekeyser, “Renormalization of the anisotropic linear xy model,” Phys. Rev. B 51, 15218–15228 (1995). [CrossRef]
  50. L. Zhou, H. S. Song, Y. Q. Guo, and C. Li, “Enhanced thermal entanglement in an anisotropic Heisenberg xyz chain,” Phys. Rev. A 68, 024301 (2003). [CrossRef]
  51. T. Hirano and Y. Hatsugai, “Entanglement entropy of one-dimensional gapped spin chains,” J. Phys. Soc. Jpn. 76, 074603 (2007). [CrossRef]
  52. X. Peng, J. Zhang, J. Du, and D. Suter, “Ground-state entanglement in a system with many-body interactions,” Phys. Rev. A 81, 042327 (2010). [CrossRef]
  53. J. L. Guo and H. S. Song, “Entanglement and teleportation through a two-qubit Heisenberg xxz model with the Dzyaloshinskii–Moriya interaction,” Eur. Phys. J. D 56, 265–269 (2010). [CrossRef]
  54. K. Rodriguez, A. Argüelles, A. K. Kolezhuk, L. Santos, and T. Vekua, “Field-induced phase transitions of repulsive spin-1 bosons in optical lattices,” Phys. Rev. Lett. 106, 105302 (2011). [CrossRef]
  55. G. De Chiara, M. Lewenstein, and A. Sanpera, “Bilinear–biquadratic spin-1 chain undergoing quadratic Zeeman effect,” Phys. Rev. B 84, 054451 (2011). [CrossRef]
  56. P. Chen, Z.-L. Xue, I. P. McCulloch, M.-C. Chung, and S.-K. Yip, “Dimerized and trimerized phases for spin-2 bosons in a one-dimensional optical lattice,” Phys. Rev. A 85, 011601(R) (2012). [CrossRef]
  57. P. Millet, F. Mila, F. C. Zhang, M. Mambrini, A. B. Van Oosten, V. A. Pashchenko, A. Sulpice, and A. Stepanov, “Biquadratic interactions and spin-Peierls transition in the spin-1 chain LiVGe2O6,” Phys. Rev. Lett. 83, 4176–4179 (1999). [CrossRef]
  58. J. Lou, T. Xiang, and Z. Su, “Thermodynamics of the bilinear–biquadratic spin-one Heisenberg chain,” Phys. Rev. Lett. 85, 2380–2383 (2000). [CrossRef]
  59. R. Bastardis, N. Guihèry, and C. de Graaf, “Microscopic origin of isotropic non-Heisenberg behavior in s = 1 magnetic systems,” Phys. Rev. B 76, 132412 (2007). [CrossRef]
  60. A. Bencini and F. Totti, “On the importance of the biquadratic terms in exchange coupled systems: a post-HF investigation,” Inorg. Chim. Acta 361, 4153–4156 (2008).
  61. V. V. Semenaka, O. V. Nesterova, V. N. Kokozay, V. V. Dyakonenko, R. I. Zubatyuk, O. Shishkin, R. Boča, J. Jezierska, and A. Ozarowski, “CrIII-CrIII interactions in two alkoxo-bridged heterometallic Zn2Cr2 complexes self-assembled from zinc oxide, Reinecke’s salt, and diethanolamine,” Inorg. Chem. 49, 5460–5471 (2010). [CrossRef]
  62. A. Wagner, C. Bruder, and E. Demler, “Spin-1 atoms in optical superlattices: single-atom tunneling and entanglement,” Phys. Rev. A 84, 063636 (2011). [CrossRef]
  63. D. J. Papoular, G. V. Shlyapnikov, and J. Dalibard, “Microwave-induced Fano–Feshbach resonances,” Phys. Rev. A 81, 041603(R) (2010). [CrossRef]
  64. Y. X. Liu, A. Miranowicz, Y. B. Gao, J. J. Bajer, C. P. Sun, and F. Nori, “Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators,” Phys. Rev. A 82, 032101 (2010). [CrossRef]
  65. T. V. Gevorgyan, A. R. Shahinyan, and G. Y. Kryuchkyan, “Generation of Fock states and qubits in periodically pulsed nonlinear oscillators,” Phys. Rev. A 85, 053802 (2012). [CrossRef]
  66. A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori, “Two-photon and three-photon blockades in driven nonlinear systems,” Phys. Rev. A 87, 023809 (2013). [CrossRef]
  67. W. Leoński and R. Tanaś, “Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium,” Phys. Rev. A 49, R20–R23 (1994). [CrossRef]
  68. A. Miranowicz and W. Leoński, “Dissipation in systems of linear and nonlinear quantum scissors,” J. Opt. B 6, S43–S46 (2004). [CrossRef]
  69. A. Kowalewska-Kudłaszyk and W. Leoński, “Squeezed vacuum reservoir effect for entanglement decay in the nonlinear quantum scissor system,” J. Phys. B 43, 205503 (2010). [CrossRef]
  70. W. Leoński and A. Kowalewska-Kudłaszyk, “Quantum scissors finite-dimensional states engineering,” Prog. Opt. 56, 131–185 (2011). [CrossRef]
  71. G. J. Milburn, “Coherence and chaos in a quantum optical system,” Phys. Rev. A 41, 6567–6570 (1990). [CrossRef]
  72. G. J. Milburn and C. A. Holmes, “Quantum coherence and classical chaos in a pulsed parametric oscillator with a Kerr nonlinearity,” Phys. Rev. A 44, 4704–4711 (1991). [CrossRef]
  73. W. Leoński, “Quantum and classical dynamics for a pulsed nonlinear oscillator,” Physica A 233, 365–378 (1996). [CrossRef]
  74. A. Kowalewska-Kudłaszyk, J. K. Kalaga, and W. Leoński, “Long-time fidelity and chaos for a kicked nonlinear oscillator system,” Phys. Lett. A 373, 1334–1340 (2009). [CrossRef]
  75. T. V. Gevorgyan, A. R. Shahinyan, L. Y. Chew, and G. Y. Kryuchkyan, “Bistability and chaos at low levels of quanta,” Phys. Rev. E 88, 022910 (2013). [CrossRef]
  76. R. Grobe, K. Rzążewski, and J. H. Eberly, “Measure of electron–electron correlations in atomic physics,” J. Phys. B 27, L503–L508 (1994). [CrossRef]
  77. T. Sowiński, M. Brewczyk, M. Gajda, and K. Rzążewski, “Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap,” Phys. Rev. A 82, 053631 (2010). [CrossRef]
  78. P. Rungta, W. J. Munro, K. Nemoto, P. Deuar, G. J. Milburn, and C. M. Caves, “Qudit entanglement,” in Directions in Quantum Optics, H. J. Carmichael, R. J. Glauber, and M. O. Scully, eds., Vol. 561 of Lecture Notes in Physics (Springer-Verlag, 2001), pp. 149–164.
  79. D. Sych and G. Leuchs, “A complete basis of generalized Bell states,” New J. Phys. 11, 013006 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited