OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1901–1905

Ultrabroadband XFROG of few-cycle mid-infrared pulses by four-wave mixing in a gas

A. A. Lanin, A. B. Fedotov, and A. M. Zheltikov  »View Author Affiliations

JOSA B, Vol. 31, Issue 8, pp. 1901-1905 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cross-correlation frequency-resolved optical gating (XFROG) based on four-wave mixing (FWM) in a gas medium is shown to enable dispersion-free characterization of few-cycle mid-infrared (mid-IR) pulses tunable within a spectral range of more than two octaves. The FWM XFROG technique is used to measure spectra and pulse shapes, as well as to retrieve the phase of a few-cycle output of difference-frequency generation (DFG) tunable from 3 to 11 μm. With Ti:sapphire laser pulses used as a reference, this FWM process maps the entire tunability range of the DFG source, spanning over more than two octaves, onto a wavelength region of only 50 nm in the visible, allowing convenient XFROG measurements and revealing the reshaping of few-cycle mid-IR field waveforms by molecular rovibrational modes.

© 2014 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(190.7220) Nonlinear optics : Upconversion
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Nonlinear Optics

Original Manuscript: March 31, 2014
Revised Manuscript: May 23, 2014
Manuscript Accepted: May 24, 2014
Published: July 22, 2014

A. A. Lanin, A. B. Fedotov, and A. M. Zheltikov, "Ultrabroadband XFROG of few-cycle mid-infrared pulses by four-wave mixing in a gas," J. Opt. Soc. Am. B 31, 1901-1905 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1999).
  2. S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997). [CrossRef]
  3. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuška, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev. A 86, 033831 (2012). [CrossRef]
  4. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys. 3, 381–387 (2007). [CrossRef]
  5. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012). [CrossRef]
  6. V. Petrov, F. Rotermund, F. Noack, and P. Schunemann, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999). [CrossRef]
  7. V. Petrov, F. Rotermund, and F. Noack, “Generation of high-power femtosecond light pulses at 1  kHz in the mid-infrared spectral range between 3 and 12  μm by second-order nonlinear processes in optical crystals,” J. Opt. A 3, R1–R7 (2001). [CrossRef]
  8. J. M. Fraser, D. Wang, A. Haché, G. R. Allan, and H. M. van Driel, “Generation of high-repetition-rate femtosecond pulses from 8 to 18  μm,” Appl. Opt. 36, 5044–5047 (1997). [CrossRef]
  9. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20  μm,” J. Opt. Soc. Am. B 17, 2086–2094 (2000). [CrossRef]
  10. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR (4–12  μm) using HgGa2S4 and AgGaS2,” Opt. Commun. 185, 177–183 (2000). [CrossRef]
  11. Y. Nomura, H. Shirai, K. Ishii, N. Tsurumachi, A. A. Voronin, A. M. Zheltikov, and T. Fuji, “Phase-stable sub-cycle mid-infrared conical emission from filamentation in gases,” Opt. Express 20, 24741–24747 (2012). [CrossRef]
  12. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011). [CrossRef]
  13. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9  μm in argon,” Opt. Lett. 37, 3456–3458 (2012). [CrossRef]
  14. O. Chalus, A. Thai, P. K. Bates, and J. Biegert, “Six-cycle mid-infrared source with 3.8  μJ at 100  kHz,” Opt. Lett. 35, 3204–3206 (2010). [CrossRef]
  15. D. T. Reid, P. Loza-Alvarez, C. T. A. Brown, T. Beddard, and W. Sibbett, “Amplitude and phase measurement of mid-infrared femtosecond pulses by using cross-correlation frequency-resolved optical gating,” Opt. Lett. 25, 1478–1480 (2000). [CrossRef]
  16. M. Tsubouchi and T. Momose, “Cross-correlation frequency-resolved optical gating for mid-infrared femtosecond laser pulses by an AgGaGeS4 crystal,” Opt. Lett. 34, 2447–2449 (2009). [CrossRef]
  17. A. Trisorio, S. Grabielle, M. Divall, N. Forget, and C. P. Hauri, “Self-referenced spectral interferometry for ultrashort infrared pulse characterization,” Opt. Lett. 37, 2892–2894 (2012). [CrossRef]
  18. T. Fuji and Y. Nomura, “Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen,” Appl. Sci. 3, 122–138 (2013). [CrossRef]
  19. Y. Nomura, Y.-T. Wang, T. Kozai, H. Shirai, A. Yabushita, C.-W. Luo, S. Nakanishi, and T. Fuji, “Single-shot detection of mid-infrared spectra by chirped-pulse upconversion with four-wave difference frequency generation in gases,” Opt. Express 21, 18249–18254 (2013). [CrossRef]
  20. A. Verhoef, A. Mitrofanov, A. Zheltikov, and A. Baltuška, “Plasma-blueshift spectral shear interferometry for characterization of ultimately short optical pulses,” Opt. Lett. 34, 82–84 (2009). [CrossRef]
  21. J. Knorr, P. Rudolf, and P. Nuernberger, “A comparative study on chirped-pulse upconversion and direct multichannel MCT detection,” Opt. Express 21, 30693–30706 (2013). [CrossRef]
  22. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  23. G. C. Bjorklund, “Effects of focusing on third-order nonlinear processes in isotropic media,” IEEE J. Quantum Electron. 11, 287–296 (1975). [CrossRef]
  24. A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited