OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 4, Iss. 6 — Jun. 1, 1987
  • pp: 968–976

Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties

Kenneth D. Singer, Mark G. Kuzyk, and John E. Sohn  »View Author Affiliations


JOSA B, Vol. 4, Issue 6, pp. 968-976 (1987)
http://dx.doi.org/10.1364/JOSAB.4.000968


View Full Text Article

Acrobat PDF (1099 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Liquid crystals and polymer glasses can be formed into orientationally ordered materials by raising the temperature of the material to a temperature at which molecular motion is greatly enhanced, applying an external aligning field, and then coolingwith the field applied. The resulting material exhibits second-order nonlinear-optical effects. In this paper, the relationship between the molecular hyperpolarizability and the macroscopic susceptibility is presented. The susceptibility is seen to depend on the microscopic order parameters commonly associated with liquid crystals and is discussed in the limits of one-dimensional molecules and poled polymer glasses. Agreement is found between the theory and second-harmonic-generation measurements of polymer glasses. Results of electrooptic measurements are compared with second-harmonic-generation measurements that suggest that the electro-optic effect is mostly electronic in origin.

© 1987 Optical Society of America

Citation
Kenneth D. Singer, Mark G. Kuzyk, and John E. Sohn, "Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties," J. Opt. Soc. Am. B 4, 968-976 (1987)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-4-6-968


Sort:  Author  |  Journal  |  Reset

References

  1. A. F. Garito and K. D. Singer, Laser Focus 18(2), 59 (1982).
  2. J. Zyss, J. Molec. Electron. 1, 25 (1985).
  3. D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symposium Series No. 233 (American Chemical Society, Washington, D.C., 1983).
  4. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).
  5. J. Zyss and J. L. Oudar, Phys. Rev. A 26, 2028 (1982).
  6. K. Y. Wong and A. F. Garito, Phys. Rev. A 34, 5051 (1986).
  7. Y.-Z. Xie and Z.-C. Ou-Yang, Commun. Theor. Phys. 6, 1 (1986).
  8. I. C. Khoo and Y. R. Shen, Opt. Eng. 24, 579 (1985).
  9. N. F. Pilipetski, A. V. Sukhov, N. V. Tabiryan, and B. Ya. Zel'dovich, Opt. Commun. 37, 280 (1981).
  10. S. D. Durbin and Y. R. Shen, Phys. Rev. Lett. A 30, 1419 (1984).
  11. S. K. Saha and G. K. Wong, Appl. Phys. Lett. 34, 423 (1979).
  12. S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestly, J. Chem. Phys. 66, 4635 (1977).
  13. S. J. Gu, S. K. Saha, and G. K. Wong, Molec. Cryst. Liq. Cryst. 69, 287 (1981).
  14. Z.-C. Ou-Yang and Y.-Z. Xie, Phys. Rev. A 32, 1189 (1985).
  15. G. R. Meredith, J. G. Vandusen, and D. J. Williams, in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symposium Series No. 233 (American Chemical Society, Washington, D.C., 1983).
  16. K. D. Singer, J. E. Sohn, and S. J. Lalama, Appl. Phys. Lett. 49, 248 (1986).
  17. H. Ringsdorf, H.-W. Schmidt, G. Baur, R. Kiefer, and F. Windscheid, Liq. Cryst. (GB) 1, 319 (1986).
  18. E. E. Havinga and P. van Pelt, Ber. Bunsenges. Phys. Chem. 83, 816 (1979).
  19. See, for example, J. F. Nye, Physical Properties of Crystals (Clarendon, London, 1957).
  20. C. W. Dirk (AT&T Bell Laboratories, Murray Hill, New Jersey 0794) and R. Twieg (personal communication).
  21. S. Kielich, IEEE J. Quantum Electron. QE-5, 562 (1969).
  22. S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, London, 1977).
  23. W. Maier and A. Saupe, Z. Naturforsch. 13a, 564 (1958); 14a, 882 (1959); 15a, 287 (1960).
  24. S. J. Lalama and A. F. Garito, Phys. Rev. A 20, 1179 (1979).
  25. K. D. Singer and A. F. Garito, J. Chem. Phys. 75, 3572 (1981), and references therein.
  26. A. Saupe, in Liquid Crystals, G. H. Brown, G. J. Dienes, and M. M. Labes, eds. (Gordon and Breach, New York, 1966).
  27. See, for example, I. P. Kaminow, An Introduction to ElectroOptic Devices (Academic, New York, 1974).
  28. J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66, 2664 (1977).
  29. D. A. Kleinman, Phys. Rev. 126, 1977 (1962).
  30. J. F. Ward and P. A. Franken, Phys. Rev. 133, A183 (1964).
  31. K. D. Singer, S. J. Lalama, J. E. Sohn, and R. D. Small, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1987).
  32. C. C. Teng and A. F. Garito, Phys. Rev. B 28, 6766 (1983).
  33. C. W. Dirk, H. E. Katz, K. D. Singer, and J. E. Sohn, submitted to J. Chem. Phys.
  34. M. G. Kuzyk, J. E. Sohn, S. J. Lalama, and K. D. Singer, to be submitted to J. Opt. Soc. Am. B.
  35. M. Sigelle and R. Hierle, J. Appl. Phys. 52, 4199 (1981).
  36. G. Arfken, Mathematical Methods for Physicists, 2nd ed. (Academic, New York, 1970), pp. 173–183.
  37. S. J. Cyvin, J. E. Rauch, and J. C. Decius, J. Chem. Phys. 43, 4083 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited