OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 8, Iss. 3 — Mar. 1, 1991
  • pp: 562–569

Efficient second Stokes Raman conversion in hydrogen

Christopher Reiser, T. D. Raymond, and R. B. Michie  »View Author Affiliations

JOSA B, Vol. 8, Issue 3, pp. 562-569 (1991)

View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report cascade Raman generation of 313-nm radiation by second Stokes Raman shifting 248-nm pulses in H2. A single seed generator was used to produce the first and second Stokes seed beams. Both collinear- and crossed-beam amplifier configurations were investigated. A peak conversion efficiency of 43% was obtained in a 2-m amplifier cell containing 16 atm of hydrogen. Under optimized conditions, the phase front of the second Stokes beam exhibited only a fraction of a wave of aberration. We find that a trade-off between high beam quality and high conversion efficiency exists in a system that relies on a single seed generator.

© 1991 Optical Society of America

Original Manuscript: January 11, 1990
Manuscript Accepted: October 23, 1990
Published: March 1, 1991

Christopher Reiser, R. B. Michie, and T. D. Raymond, "Efficient second Stokes Raman conversion in hydrogen," J. Opt. Soc. Am. B 8, 562-569 (1991)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Komine, W. H. Long, E. A. Stappaerts, S. J. Brosnan, “Beam cleanup and low-distortion amplification in efficient high-gain hydrogen Raman amplifiers,” J. Opt. Soc. Am. B 3, 1428 (1986). [CrossRef]
  2. J. Reintjes, R. H. Lehmberg, R. S. F. Chang, M. T. Duignan, G. Calame, “Beam cleanup with stimulated Raman scattering in the intensity-averaging regime,” J. Opt. Soc. Am. B 3, 1408 (1986). [CrossRef]
  3. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Transient stimulated Raman amplification in hydrogen,” J. Opt. Soc. Am. B 5, 37 (1988). [CrossRef]
  4. A. Luches, V. Nassisi, M. R. Perrone, “Stimulated Raman scattering in H2–Ar mixtures,” Opt. Lett. 12, 33 (1987). [CrossRef] [PubMed]
  5. A. Flusberg, D. Korf, “Wave-front replication versus beam cleanup by stimulated scattering,” J. Opt. Soc. Am. B 4, 687 (1987). [CrossRef]
  6. C. Reiser, T. D. Raymond, R. B. Michie, A. P. Hickman, “Efficient anti-Stokes Raman conversion in collimated beams,” J. Opt. Soc. Am. B 6, 1859 (1989). [CrossRef]
  7. P. R. Peterson, D. A. Cardimona, A. Gavrielides, “Anti-Stokes generation in focused geometries,” J. Opt. Soc. Am. B 4, 1970 (1987). [CrossRef]
  8. Z. W. Li, C. Radzewicz, M. G. Raymer, “Cancellation of laser phase fluctuations in Stokes and anti-Stokes generation,” J. Opt. Soc. Am. B 5, 2340 (1988). [CrossRef]
  9. B. Bobs, C. Warner, “Closed-form solutions for parametric second Stokes generation in Raman amplifiers,” IEEE J. Quantum Electron. 24, 660 (1988). [CrossRef]
  10. B. Richie, “Theory of transient stimulated Raman scattering in H2,” Phys. Rev. A 35, 5108 (1987). [CrossRef]
  11. A. P. Hickman, W. K. Bischel, “Theory of Stokes and anti-Stokes generation by Raman frequency conversion in the transient limit,” Phys. Rev. A 37, 2516 (1988). [CrossRef] [PubMed]
  12. Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965). [CrossRef]
  13. J. R. Ackerhalt, “Novel analytic solutions to general four-wave-mixing problems in a Raman medium,” Phys. Rev. Lett. 46, 922 (1981). [CrossRef]
  14. D. Eimerl, R. S. Hargrove, J. A. Paisner, “Efficient frequency conversion by stimulated Raman scattering,” Phys. Rev. Lett. 46, 651 (1981). [CrossRef]
  15. M. D. Duncan, Optical Sciences Division, Naval Research Laboratory, Washington, D.C. 20375 (personal communication, 1989).
  16. X. Cheng, T. Kobayashi, “Raman wave front of higher-order Stokes and four-wave mixing process,” J. Opt. Soc. Am. B. 5, 2363 (1988). [CrossRef]
  17. R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, “Theory of Stokes pulse shapes in transient Raman scattering,” Phys. Rev. A 2, 60 (1970). [CrossRef]
  18. T. D. Raymond, C. Reiser, P. Esherick, R. B. Michie, “Quenched-laser operation of a Littman dye oscillator,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 67 (1988); T. D. Raymond, C. Reiser, R. G. Adams, R. B. Michie, C. Woods, “Pulse-train amplification of subnanosecond near-transform-limited KrF pulses,” Proc. Soc. Photo-Opt. Instrum. Eng. 912, 122 (1988).
  19. M. D. Duncan, R. Mahon, J. Reintjes, L. L. Tankersley, “Parametric Raman gain suppression in D2and H2,” Opt. Lett. 11, 803 (1986). [CrossRef] [PubMed]
  20. K. Nattermann, N. Fabricius, D. von der Linde, “Observation of transverse effects on quantum fluctuations in stimulated Raman scattering,” Opt. Commun. 57, 212 (1986). [CrossRef]
  21. M. G. Raymer, K. Rzazewski, J. Mostowski, “Pulse-energy statistics in stimulated Raman scattering,” Opt. Lett. 7, 71 (1982). [CrossRef] [PubMed]
  22. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Control of transient Raman amplifiers,” Proc. Soc. Photo-Opt. Instrum. Eng. 874, 200 (1988).
  23. M. G. Raymer, J. Mostowski, “Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Phys. Rev. A 24, 1980 (1981). [CrossRef]
  24. S. A. Akhmanov, Yu. E. D’yakov, L. I. Pavlov, “Statistical phenomena in Raman scattering stimulated by broad-band pump,” Sov. Phys. JETP 39, 249 (1974).
  25. J. P. Paranen, M. J. Shaw, “High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and applications,” J. Opt. Soc. Am. B 3, 1374 (1986). [CrossRef]
  26. J. Goldhar, J. R. Murray, “Intensity averaging and four-wave mixing in Raman amplifiers,” IEEE J. Quantum Electron. QE-18, 399 (1982). [CrossRef]
  27. J. Goldhar, M. W. Taylor, J. R. Murray, “An efficient double-pass Raman amplifier with pump intensity averaging in a light guide,” IEEE J. Quantum. Electron. QE-20, 772 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited