OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 5 — May. 1, 2002
  • pp: 1045–1054

Optics InfoBase > JOSA B > Volume 19 > Issue 5 > Nonlinear dynamics of mode-locking optical fiber ring lasers

Nonlinear dynamics of mode-locking optical fiber ring lasers

Kristin M. Spaulding, Darryl H. Yong, Arnold D. Kim, and J. Nathan Kutz  »View Author Affiliations

JOSA B, Vol. 19, Issue 5, pp. 1045-1054 (2002)

View Full Text Article

Acrobat PDF (288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider a model of a mode-locked fiber ring laser for which the evolution of a propagating pulse in a birefringent optical fiber is periodically perturbed by rotation of the polarization state owing to the presence of a passive polarizer. The stable modes of operation of this laser that correspond to pulse trains with uniform amplitudes are fully classified. Four parameters, i.e., polarization, phase, amplitude, and chirp, are essential for an understanding of the resultant pulse-train uniformity. A reduced set of four coupled nonlinear differential equations that describe the leading-order pulse dynamics is found by use of the variational nature of the governing equations. Pulse-train uniformity is achieved in three parameter regimes in which the amplitude and the chirp decouple from the polarization and the phase. Alignment of the polarizer either near the slow or the fast axis of the fiber is sufficient to establish this stable mode locking.

© 2002 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3560) Lasers and laser optics : Lasers, ring
(140.3570) Lasers and laser optics : Lasers, single-mode

Kristin M. Spaulding, Darryl H. Yong, Arnold D. Kim, and J. Nathan Kutz, "Nonlinear dynamics of mode-locking optical fiber ring lasers," J. Opt. Soc. Am. B 19, 1045-1054 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers,” Appl. Phys. Lett. 23, 142–170 (1973).
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
  3. S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electro-magnetic waves,” Sov. Phys. JETP 38, 248–253 (1974).
  4. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Polarized soliton instability and branching in birefringent fibers,” Opt. Commun. 70, 166–172 (1989).
  5. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Grüner-Nielsen, and T. Veng, “Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons,” Opt. Lett. 25, 704–706 (2000).
  6. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fiber ring laser,” Electron. Lett. 28, 2226–2227 (1992).
  7. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-pulse modelocking in fiber lasers,” IEEE J. Quantum Electron. 30, 200–208 (1994).
  8. M. Fermann, M. J. Andrejco, Y. Silverberg, and M. L. Stock, “Passive mode locking by using nonlinear polarization evolution in a polarizing-maintaining erbium-doped fiber laser,” Opt. Lett. 18, 894–896 (1993).
  9. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16, 502–504 (1991).
  10. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, T. J. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber lasers: experiment,” J. Opt. Soc. Am. B 17, 354–365 (2000).
  11. A. D. Kim, J. N. Kutz, and D. Muraki, “Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polarization rotation,” IEEE J. Quantum Electron. 36, 465–471 (2000).
  12. G. Sucha, S. R. Bolton, S. Weiss, and D. S. Chemla, “Period doubling and quasi-periodicity in additive-pulse mode-locked lasers,” Opt. Lett. 20, 1794–1796 (1995).
  13. D. J. Muraki and W. L. Kath, “Hamiltonian dynamics of solitons in optical fibers,” Physica D 48, 53–64 (1991).
  14. J. N. Kutz, P. Holmes, S. G. Evangelides, and J. P. Gordon, “Hamiltonian dynamics of dispersion-managed breathers,” J. Opt. Soc. Am. B 15, 87–96 (1998).
  15. P. Holmes and J. N. Kutz, “Dynamics and bifurcations of a planar map modelling dispersion managed breathers,” SIAM J. Appl. Math. 59, 1288–1302 (1999).
  16. J. N. Kutz, C. Hile, W. L. Kath, R. D. Li, and P. Kumar, “Pulse propagation in nonlinear optical fiber lines that employ phase-sensitive parametric amplifiers,” J. Opt. Soc. Am. B 11, 2112–2123 (1994).
  17. J. N. Kutz and W. L. Kath, “Stability of pulses in nonlinear optical fibers using phase-sensitive amplifiers,” SIAM J. Appl. Math. 56, 611–626 (1996).
  18. A. D. Kim, C. G. Goedde, and W. L. Kath, “Stabilizing dark solitons by using periodic phase-sensitive amplifications,” Opt. Lett. 21, 465–467 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited