OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 22, Iss. 6 — Jun. 1, 2005
  • pp: 1199–1210

Optics InfoBase > JOSA B > Volume 22 > Issue 6 > Structurally chiral photonic crystals with magneto-optic activity: indirect photonic bandgaps, negative refraction, and superprism effects

Structurally chiral photonic crystals with magneto-optic activity: indirect photonic bandgaps, negative refraction, and superprism effects

Ion Bita and Edwin L. Thomas  »View Author Affiliations

JOSA B, Vol. 22, Issue 6, pp. 1199-1210 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (877 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have theoretically investigated the general properties of photonic crystals without time-reversal and space-inversion symmetries by examining the case of one-dimensional periodic, lossless dielectric helical media (HM) with magneto-optic (MO) activity. We show that photonic bandgap formation in the absence of these two symmetry elements leads to a remarkable set of properties: indirect photonic bandgaps (edges not aligned in k space), backward wave propagating eigenmodes (which allow for negative refraction), unusual nonpropagating modes in the gap (their complex-valued wave vectors have frequency-dependent, nonzero real parts, which do not change sign for opposite decay directions), anomalous propagation, and group-velocity-based unidirectional superprism effects. Particular properties of MO HM are discussed in detail.

© 2005 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(260.2110) Physical optics : Electromagnetic optics

Ion Bita and Edwin L. Thomas, "Structurally chiral photonic crystals with magneto-optic activity: indirect photonic bandgaps, negative refraction, and superprism effects," J. Opt. Soc. Am. B 22, 1199-1210 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Brillouin, Wave Propagation in Periodic Structures (Dover, New York, 1953).
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  5. M. Warner and E. M. Terentjev, Liquid Crystal Elastomers (Oxford U. Press, New York, 2003).
  6. K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature 384, 616 (1996). [CrossRef]
  7. A. Lakhtakia, "Sculptured thin films: accomplishments and emerging uses," Mater. Sci. Eng. C 19, 427-434 (2002). [CrossRef]
  8. A. Lakhtakia and W. S. Weiglhofer, "On light propagation in helicoidal bianisotropic mediums," Proc. R. Soc. London Ser. A 448, 419-437 (1995). [CrossRef]
  9. A. K. Zvedin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, Philadelphia, Pa., 1997).
  10. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J. Phys. D 36, 277-287 (2003). [CrossRef]
  11. C. Koerdt, G. Düchs, and G. L. J. A. Rikken, "Magnetochiral anisotropy in Bragg scattering," Phys. Rev. Lett. 91, 073902 (2003). [CrossRef] [PubMed]
  12. O. S. Eritsyan, "Diffraction reflection of light in a cholesteric liquid crystal in the presence of wave irreversibility and Bragg formula for media with nonidentical forward and return wavelengths," J. Exp. Theor. Phys. 90, 102-108 (2000). [CrossRef]
  13. A. H. Gevorgyan, "Magneto-optics of a thin film layer with helical structure and enormous anisotropy," Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 382, 1-19 (2002). [CrossRef]
  14. A. H. Gevorgyan, "Optical diode based on a highly anisotropic layer of a helical periodic medium subjected to a magnetic field," Tech. Phys. 47, 1008-1013 (2002). [CrossRef]
  15. A. Lakhtakia, "Anomalous axial propagation in a gyrotropic, locally uniaxial, dielectric helicoidally nonhomogeneous medium," Int. J. Electron Commun. 53, 45-48 (1999).
  16. M. D. Pickett and A. Lakhtakia, "On gyrotropic chiral sculptured thin films for magneto-optics," Optik 113, 367-371 (2002). [CrossRef]
  17. R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, New York, 1965).
  18. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and µ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  19. D. N. Chigrin and C. M. S. Torres, "Periodic thin-film interference filters as one-dimensional photonic crystals," Opt. Spectrosc. 91, 484-489 (2001). [CrossRef]
  20. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  21. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096-R10099 (1998). [CrossRef]
  22. A. Figotin and I. Vitebsky, "Nonreciprocal magnetic photonic crystals," Phys. Rev. E 63, 066609 (2001). [CrossRef]
  23. H. C. Chen, Theory of Electromagnetic Waves: A Coordinate-Free Approach (McGraw-Hill, New York, 1983).
  24. J. A. Kong, Electromagnetic Wave Theory (EMW, Cambridge, Mass., 2000).
  25. I. Bita and E. L. Thomas are preparing a manuscript that will describe the effects of further reducing the symmetry of the repeat unit, for example by departing from the linear rotation in Eqs. .
  26. G. H. Wagnière, "The magnetochiral effect and related optical phenomena," Chem. Phys. 245, 165-173 (1999). [CrossRef]
  27. P. Kleindienst and G. H. Wagnière, "Interferometric detection of magnetochiral birefringence," Chem. Phys. Lett. 288, 89-97 (1998). [CrossRef]
  28. M. Vallet, R. Ghosh, A. Le Floch, T. Ruchon, F. Bretenaker, and J.-Y. Thépot, "Observation of magnetochiral birefringence," Phys. Rev. Lett. 87, 183003 (2001). [CrossRef]
  29. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Elmsford, N.Y., 1984).
  30. G. Wagnière and A. Meier, "The influence of a static magnetic field on the absorption coefficient of a chiral molecule," Chem. Phys. Lett. 93, 78-81 (1982). [CrossRef]
  31. G. Wagnière, "Magnetochiral dichroism in emission. Photoselection and the polarization of transitions," Chem. Phys. Lett. 110, 546-551 (1984). [CrossRef]
  32. L. D. Barron and J. Vrbancich, "Magneto-chiral birefringence and dichroism," Mol. Phys. 51, 715-730 (1984). [CrossRef]
  33. G. L. J. A. Rikken and E. Raupach, "Pure and cascaded magnetochiral anisotropy in optical absorption," Phys. Rev. E 58, 5081-5084 (1998). [CrossRef]
  34. G. L. J. A. Rikken and E. Raupach, "Observation of magneto-chiral dichroism," Nature 390, 493-494 (1997). [CrossRef]
  35. F. A. Pinheiro and B. A. van Tiggelen, "Magnetochiral scattering of light: optical manifestation of chirality," Phys. Rev. E 66, 016607 (2002). [CrossRef]
  36. N. Engeta, D. L. Jaggard, and M. W. Kowarz, "Electromagnetic waves in Faraday chiral media," IEEE Trans. Antennas Propag. 40, 367-374 (1992). [CrossRef]
  37. H. Taouk, "Optical wave propagation in active media: gyrotropic-gyrochiral media," J. Opt. Soc. Am. A 14, 2006-2012 (1997). [CrossRef]
  38. W. S. Weiglhofer, A. Lakhtakia, and B. Michel, "On the constitutive parameters of a chiroferrite composite medium," Microwave Opt. Technol. Lett. 18, 342-345 (1998). [CrossRef]
  39. H. L. de Vries, "Rotatory power and other optical properties of certain liquid crystals," Acta Crystallogr. 4, 219-226 (1951). [CrossRef]
  40. C. W. Oseen, "The theory of liquid crystals," J. Chem. Soc. 29, 883-899 (1933).
  41. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  42. I. Abdulhalim, R. Weil, and L. Benguigui, "Dispersion and attenuation of the eigenwaves for light propagation in helicoidal liquid crystals," Liq. Cryst. 1, 155-167 (1986). [CrossRef]
  43. V. C. Venugopal and A. Lakhtakia, "Electromagnetic plane-wave response characteristics of nonaxially excited slabs of dielectric thin-film helicoidal bianisotropic mediums," Proc. R. Soc. London, Ser. A 456, 125-161 (2000). [CrossRef]
  44. J. A. Polo, Jr. and A. Lakhtakia, "Comparison of two methods for oblique propagation in helicoidal bianisotropic mediums," Opt. Commun. 230, 369-386 (2004). [CrossRef]
  45. V. I. Kopp, Z.-Q. Zhang, and A. Z. Genack, "Lasing in chiral photonic structures," Prog. Quantum Electron. 27, 369-416 (2003). [CrossRef]
  46. I. Bita and E. L. Thomas, 'Tunneling time for barriers lacking space-inversion and time-reversal symmetries,' Phys. Rev. Lett., submitted for publication.
  47. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  48. D. R. Smith and N. Kroll, "Negative refraction index in left-handed materials," Phys. Rev. Lett. 85, 2933-2936 (2000). [CrossRef] [PubMed]
  49. G. L. J. A. Rikken, A. Sparenberg, and B. A. van Tiggelen, "Photonic magneto-transport," Physica B 246-247, 188-194 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited