OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 1, Iss. 2 — Apr. 1, 1984
  • pp: 176–188

Modeling noise by jump processes in strong laser–atom interactions

Bruce W. Shore  »View Author Affiliations


JOSA B, Vol. 1, Issue 2, pp. 176-188 (1984)
http://dx.doi.org/10.1364/JOSAB.1.000176


View Full Text Article

Enhanced HTML    Acrobat PDF (1656 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a practical scheme for computing time-dependent properties, such as excitation probabilities and dipole correlation functions of a multilevel atom strongly excited by a laser in the presence of noise, is described in detail. The method, which is based on the notion of randomly interrupted, multivalued jump processes, can be used to treat laser phase, amplitude, and/or frequency noise, and fluctuating microfields. The method provides analytic expressions, which are based on eigenvalues and eigenvectors of a finite-dimensional matrix, for time dependence and spectral dependence, and it permits computation of time-dependent fluorescence emitted from atoms excited by a noisy laser. The method is illustrated by application to time-dependent spectra.

© 1984 Optical Society of America

Citation
Bruce W. Shore, "Modeling noise by jump processes in strong laser-atom interactions," J. Opt. Soc. Am. B 1, 176-188 (1984)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-1-2-176

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited