OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 10, Iss. 11 — Nov. 1, 1993
  • pp: 2048–2055

Simulation of strong nonlinear effects in optical waveguides

X. H. Wang and G. K. Cambrell  »View Author Affiliations


JOSA B, Vol. 10, Issue 11, pp. 2048-2055 (1993)
http://dx.doi.org/10.1364/JOSAB.10.002048


View Full Text Article

Enhanced HTML    Acrobat PDF (859 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear optical channel waveguides are modeled. It is demonstrated that a saturable nonlinear permittivity model is essential mathematically when strong nonlinear effects are simulated, so that the nonlinear wave equation possesses realistic solutions. Several precautionary factors in the numerical simulation of self-focusing behavior are addressed. For example, care must be exercised when the threshold power is calculated for some nonlinear structure exhibiting an abrupt all-optical switching phenomenon.

© 1993 Optical Society of America

History
Original Manuscript: November 9, 1992
Revised Manuscript: June 3, 1993
Published: November 1, 1993

Citation
X. H. Wang and G. K. Cambrell, "Simulation of strong nonlinear effects in optical waveguides," J. Opt. Soc. Am. B 10, 2048-2055 (1993)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-10-11-2048


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. T. Seaton, Xu Mai, G. I. Stegeman, H. G. Winful, “Nonlinear guided wave applications,” Opt. Eng. 24, 593–599 (1985).
  2. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988). [CrossRef]
  3. G. I. Stegeman, R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989). [CrossRef]
  4. X. H. Wang, “Finite element methods for nonlinear optical waveguides,” Ph.D. dissertation (Monash University, Clayton, Victoria, Australia, 1992).
  5. K. Hayata, M. Koshiba, “Full vectorial analysis of nonlinear-optical waveguides,” J. Opt. Soc. Am. B 5, 2494–2501 (1988). [CrossRef]
  6. X. H. Wang, L. N. Binh, G. K. Cambrell, “Vectorial finite-element methods for nonlinear optical waveguides,” in Proceedings of the 13th Australian Conference on Optical Fibre Technology (Institution of Radio and Electronics Engineers, Sydney, Australia, 1988), pp. 129–132.
  7. X. H. Wang, G. K. Cambrell, L. N. Binh, “Scalar and vector formulations of nonlinear optical waveguides: a comparison,” in Proceedings of the IREECON International 1989 (Institution of Radio and Electronics Engineers, Sydney, Australia, 1989), pp. 551–554.
  8. N. N. Akhmediev, R. F. Nabiev, Yu. M. Popov, “Three-dimensional modes of a symmetric nonlinear plane waveguide,” Opt. Commun. 69, 247–252 (1989). [CrossRef]
  9. R. D. Ettinger, F. A. Fernandez, B. M. A. Rahman, J. B. Davies, “Vector finite element solution of saturable nonlinear strip-loaded optical waveguides,” IEEE Photon. Technol. Lett. 3, 147–149 (1991). [CrossRef]
  10. N. N. Akhmediev, R. F. Nabiev, Yu. M. Popov, “Stripe nonlinear surface waves,” Solid State Commun. 66, 981–985 (1988). [CrossRef]
  11. N. N. Akhmediev, R. F. Naviev, Yu. M. Popov, “Stripe nonlinear waves in a symmetrical planar structure,” Opt. Commun. 72, 190–194 (1989). [CrossRef]
  12. A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, E. M. Wright, “Exact theory of nonlinear p-polarized optical waves,” Phys. Rev. A 35, 1159–1164 (1987). [CrossRef] [PubMed]
  13. B. M. A. Rahman, J. B. Davies, “Penalty function improvement of waveguide solution by finite elements,” IEEE Trans. Microwave Theory Tech. MTT-32, 922–928 (1984). [CrossRef]
  14. X. H. Wang, G. K. Cambrell, L. N. Binh, “A package for nonlinear optical waveguides based on E-vector finite elements,” in Advances in Electrical Engineering Software, P. P. Silvester, ed. (Computational Mechanics Publications, Boston, Mass., 1990), pp. 151–162.
  15. All the powers in the power-dispersion relations in Ref. 5 should be scaled down by a factor of 2 [K. Hayata, Department of Electrical Engineering, Hokkaido University, Sapporo, Hokkaido 060, Japan (personal communication)]. The corrected values are used here to facilitate the comparison.
  16. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1984).
  17. U. Langbein, F. Lederer, T. Peschel, H.-E. Ponath, “Nonlinear guided waves in saturable nonlinear media,” Opt. Lett. 10, 571–573 (1985). [CrossRef] [PubMed]
  18. G. I. Stegeman, E. M. Wright, C. T. Seaton, J. V. Moloney, T. P. Shen, A. A. Maradudin, R. F. Wallis, “Nonlinear slab-guided waves in non-Kerr-like media,” IEEE J. Quantum Electron. QE-22, 977–983 (1986). [CrossRef]
  19. S. J. Al–Bader, H. A. Jamid, “Nonlinear waves in saturable self-focusing thin films bounded by linear media,” IEEE J. Quantum Electron. 24, 2052–2058 (1988). [CrossRef]
  20. R. Cuykendall, K. H. Strobl, “Effects of soft saturation on nonlinear interface switching,” Phys. Rev. A 41, 352–358 (1990). [CrossRef] [PubMed]
  21. X. H. Wang, L. N. Binh, G. K. Cambrell, “Numerical analysis of a nonlinear optical channel waveguide,” in Proceedings of the 14th Australian Conference on Optical Fibre Technology (Institution of Radio and Electronics Engineers, Sydney, Australia, 1989), p. 225–228.
  22. S. J. Al–Bader, H. A. Jamid, “Guided waves in nonlinear saturable self-focusing thin films,” IEEE J. Quantum Electron. QE-23, 1947–1955 (1987). [CrossRef]
  23. W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, M. O’Neill, T. G. Cullen, C. N. Ironside, “Saturation of the nonlinear refractive-index change in a semiconductor-doped glass channel waveguide,” Appl. Phys. Lett. 54, 481–483 (1989). [CrossRef]
  24. S. Y. Auyang, P. A. Wolff, “Free-carrier-induced third-order optical nonlinearities in semiconductors,” J. Opt. Soc. Am. B 6, 595–605 (1989). [CrossRef]
  25. J. L. Coutaz, M. Kull, “Saturation of the nonlinear index of refraction in semiconductor-doped glass,” J. Opt. Soc. Am. B 8, 95–98 (1991). [CrossRef]
  26. X. H. Wang, G. K. Cambrell, “All-optical switching and bistability phenomena in nonlinear optical waveguides: Part I Power dispersion relations,” in Proceedings of the 16th Australian Conference on Optical Fibre Technology (Institution of Radio and Electronics Engineers, Sydney, Australia, 1991), pp. 314–317.
  27. X. H. Wang, G. K. Cambrell, “Full vectorial simulation of bistability phenomena in nonlinear optical channel waveguides,” J. Opt. Soc. Am. B 10, 1090–1095 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited