OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 10, Iss. 11 — Nov. 1, 1993
  • pp: 2085–2092

Light-induced charge transport in LiNbO3:Fe at high light intensities

F. Jermann and J. Otten  »View Author Affiliations


JOSA B, Vol. 10, Issue 11, pp. 2085-2092 (1993)
http://dx.doi.org/10.1364/JOSAB.10.002085


View Full Text Article

Acrobat PDF (1099 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In LiNbO3 at light intensities above 106 W/m2 much stronger refractive index changes can be induced, as expected from measurements at low intensities. Most experimental data have been published on iron-doped LiNbO3 crystals. We propose a two-center charge-transport model for LiNbO3:Fe that describes most results at low and high intensities quantitatively. It explains the intensity dependence of steady-state refractive index changes and enhanced holographic sensitivities at high light intensities as well as the presence of light-induced absorption changes.

© 1993 Optical Society of America

Citation
F. Jermann and J. Otten, "Light-induced charge transport in LiNbO3:Fe at high light intensities," J. Opt. Soc. Am. B 10, 2085-2092 (1993)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-10-11-2085


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications I and II (Springer-Verlag, Heidelberg, 1988, 1989).
  2. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, "Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods," Appl. Phys. 12, 355 (1977).
  3. A. M. Glass, D. von der Linde, and T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233 (1974).
  4. E. Krätzig and R. Sommerfeldt, "Influence of dopants on photorefractive properties of LiNbO3 crystals," in Nonlinear Optical Materials III, P. Günter, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1273, 58 (1990).
  5. C.-T. Chen, D. M. Kim, and D. von der Linde, "Efficient hologram recording in LiNbO3:Fe using optical pulses," Appl. Phys. Lett. 34, 321 (1979).
  6. V Wood, N. Hartmann, and C. Verber, "Two-photon photo-refractivity in pure and doped LiNbO3," Ferroelectrics 27, 237 (1980).
  7. F. Jermann and E. Krätzig, "Charge transport processes in LiNbO3:Fe at high intensity laser pulses," Appl. Phys. A 55, 114 (1992).
  8. P. Augustov and K. Shvarts, "The temperature and light intensity dependence of photorefraction in LiNbO3," Appl. Phys. 21, 191 (1980).
  9. O. Althoff and E. Krätzig, "Strong light-induced refractive index changes in LiNbO3," in Nonlinear Optical Materials III, P. Günter, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1273, 12 (1990).
  10. R. Göring, A Rasch, and W. Karthe, "Quantitative investigation of photorefractive effects in LiNbO3 channel wave-guides," in Electro-Optic and Magneto-Optic Materials II, H. Dammann, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1274, 18 (1990).
  11. R. Göring, Z. Yuang-Lung, and S. Steinberg, "Photoconductivity and photovoltaic behavior of LiNbO3 and LiNbO3 wave-guides at high optical intensities," Appl. Phys. A 55, 97 (1992).
  12. O. Althoff, A. Erdmann, L. Wiskott, and P. Hertel, "The photorefractive effect in LiNbO3 at high light intensity," Phys. Status Solidi A 128, K41 (1991).
  13. E. Krätzig and R. Orlowski, "Light induced charge transport in doped LiNbO3 and LiTaO3," Ferroelectrics 27, 241 (1980).
  14. J. Otten, A. Bledowski, K. Ringhofer, and R. Rupp, "Dynamical holographic storage in photorefractive crystals," Comput. Phys. Commun. 69, 187 (1992).
  15. T. J. Hall, R. Jaura, L. M. Connors, and P. D. Foote, "The photorefractive effect�"a review," Prog. Quantum Electron. 10, 77 (1985).
  16. G. A. Brost, R. A. Motes, and J. R. Rotgé, "Intensity-dependent absorption and photorefractive effects in barium titanate," J. Opt. Soc. Am. B 5, 1879 (1988).
  17. L. Holtmann, K. Buse, G. Kuper, A. Groll, H. Hesse, and E. Krtzig, "Photoconductivity and light-induced absorption in KNbO3:Fe," Appl. Phys. A 53, 81 (1991).
  18. F. Jermann and E. Krätzig, "Photorefractive effects in LiNbO3:Fe at high light intensities," in Proceedings of the International Conference on Defects in Insulating Materials, O. Kauert and J.-G. Spaeth, eds. (World Scientific, Singapore, 1993), Vol. 2, p. 1133.
  19. Y. Ohmori, M. Yamaguchi, K. Yoshino, and Y. Inuishi, "Electron Hall mobility in reduced LiNbO3," Jpn. J. Appl. Phys. 15, 2263 (1976).
  20. R. Sommerfeldt, L. Holtmann, E. Krätzig, and B. C. Grabmeier, "Influence of Mg doping and composition on the light-induced charge transport in LiNbO3," Phys. Status Solidi A 106, 89 (1988).
  21. R. Sommerfeldt, "The influence of further impurities on the photorefractive properties of Fe-doped LiNbO3 crystals," Dissertation (Universität Osnabrück, Osnabrück, Germany, 1989).
  22. K. Buse, "Thermal gratings and pyroelectrically produced charge redistribution in BaTiO3 and KNbO3," J. Opt. Soc. Am. B 10, 1266 (1993).
  23. P. Augustov and K. Shvarts, "Surface recombination and photorefraction in LiNbO3:Fe crystals," Appl. Phys. 18, 399 (1979).
  24. F. Chen, "Optically induced change of refractive indices in LiNbO3 and LiTaO3," J. Appl. Phys. 40, 3389 (1969).
  25. I. Biaggio, M. Zgonik, and P. Günther, "Photorefractive effects induced by picosecond light pulses in reduced KNbO3," J. Opt. Soc. Am. B 9, 1480 (1992).
  26. O. Schirmer and D. von der Linde, "Two-photon and x-ray-induced Nb4+ and O- small polarons in LiNbO3," Appl. Phys. Lett. 33, 35 (1978).
  27. S. Abrahams and P. Marsh, "Defect structure dependence on composition in lithium niobate," Acta Crystallogr. Sect. B 42, 61 (1986).
  28. O. Schirmer, O. Thiemann, and M. Wöhlecke, "Defects in LiNbO3—"I. Experimental aspects," J. Phys. Chem. Solids 52, 185 (1991).
  29. O. Schirmer, S. Juppe, and J. Koppitz, "ESR-, optical and photovoltaic studies of reduced undoped LiNbO3," Cryst. Lattice Defects Amorph. Mat. 16, 353 (1987).
  30. K. Sweeney and L. Halliburton, "Oxygen vacancies in lithium niobate," Appl. Phys. Lett. 43, 336 (1983).
  31. I. Kanaev, S. Kostritsky, V. Malinovsky, and A. Pugachev, "The influence of photoinduced mechanical tensions on photo-galvanic effect and Raman scattering in LiNbO3," Ferroelectrics 126, 45 (1992).
  32. T. Volk and N. Rubinina, "Nonphotorefractive impurities in lithium niobate: magnesium and zinc," Sov. Phys. Solid State 33, 674 (1991).
  33. G. Malovichko, V. Grachev, E. Kokonyan, O. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A 56, 103 (1992).
  34. D. von der Linde, O. Schirmer, and H. Kurz, "Intrinsic photorefractive effect of LiNbO3," Appl. Phys. 15, 153 (1978).
  35. I. Kanaev, V. Malinovsky, and A. Pugachev, "Changes in photogalvanic and photorefractive characteristics of lithium niobate under the light," Ferroelectrics 75, 209 (1987).
  36. Y. Ohmachi, K. Sawamoto, and H. Toyoda, "Dielectric properties of LiNbO3 single crystal up to 9 Gc," Jpn. J. Appl. Phys. 6, 1467 (1967).
  37. S. Shandarov, "Influence of piezoelectric effect on photorefractive gratings in electro-optic crystals," Appl. Phys. A 55, 91 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited